
UNIVERSAL LIBRARY

USERS GUIDE

ComputerBoards, Inc.
Revision 5.2
May, 2000

MEGA-FIFO, the CIO prefix to data acquisition board model numbers, the PCM prefix to data acquisition board model numbers,
PCM-DAS08, PCM-D24C3, PCM-DAC02, PCM-COM422, PCM-COM485, PCM-DMM, PCM-DAS16D/12,
PCM-DAS16S/12, PCM-DAS16D/16, PCM-DAS16S/16, PCI-DAS6402/16, Universal Library, InstaCal, Harsh Environment
Warranty and ComputerBoards are registered trademarks of ComputerBoards, Inc.

IBM, PC, and PC/AT are trademarks of International Business Machines Corp. Windows is a trademark of Microsoft Corp. All
other trademarks are the property of their respective owners.

Information furnished by ComputerBoards, Inc. is believed to be accurate and reliable. However, no responsibility is assumed by
ComputerBoards, Inc. neither for its use; nor for any infringements of patents or other rights of third parties, which may result
from its use. No license is granted by implication or otherwise under any patent or copyrights of ComputerBoards, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form by any
means, electronic, mechanical, by photocopying, recording or otherwise without the prior written permission of
ComputerBoards, Inc.

Notice
ComputerBoards, Inc. does not authorize any ComputerBoards, Inc. product for use in life support
systems and/or devices without the written approval of the President of ComputerBoards, Inc. Life
support devices/systems are devices or systems which, a) are intended for surgical implantation
into the body, or b) support or sustain life and whose failure to perform can be reasonably
expected to result in injury. ComputerBoards, Inc. products are not designed with the components
required, and are not subject to the testing required to ensure a level of reliability suitable for the
treatment and diagnosis of people.

SM UL User guide.lwp

TABLE OF CONTENTS

14If using VEE 3.2 or Later .
14Must Install Universal Library in Default Directory.
14New HP VEE Functions. .
134.7 USING THE LIBRARY WITH HP VEE .
124.6 USING THE LIBRARY WITH C FOR DOS. .
12Compiling Stand Alone EXE files. .
124.5 USING THE LIBRARY WITH VISUAL BASIC FOR DOS .
11BACKGROUND operation .
11Integer Arguments .
11Using String Arguments .
11DataArray Argument with Multiple Channels. .
10Passing Arguments to Universal Library. .
10Sample Basic Programs. .
9Using The Library With The BASIC Command Line Compiler.
9Using The Library Within The Integrated BASIC Environment.
9BASIC Header File. .
94.4 USING THE LIBRARY WITH DOS BASIC .
8Delphi Example Programs. .
8Borland C/C++ Example Programs. .
8Borland C/C++ For Windows .
8Microsoft Visual C++ Example Programs. .
8Microsoft Visual C++ .
7Visual Basic Example Programs. .
7CB.CFG Locations with Visual Basic. .
7Visual Basic for Windows. .
7Processor Speed. .
7Real Time Operation Under Windows. .
64.3 USING UNIVERSAL LIBRARY IN WINDOWS .
6Error Handling .
5Options Arguments. .
5Constants. .
5Function Arguments. .
54.2 GENERAL UL LANGUAGE INTERFACE DESCRIPTION .
54.1 HOW TO USE THE LIBRARY SUCCESSFULLY .
54.0 HOW TO USE THE LIBRARY .
43.3 The CB.CFG FILE & InstaCAL .
33.2 INSTALLATION - HP VEE SUPPORT. .
33.1 INSTALLATION OVERVIEW .
33.0 INSTALLATION AND CONFIGURATION .
22.0 UNIVERSAL LIBRARY DESCRIPTION .
11.0 INTRODUCTION .

4811.3 PPIO-CTR06 BOARDS .
4711.2 CIO-, AND PCI- INT32 .
4611.1 CIO-, PCI-, PC104- AND cSBX CTR SERIES. .
4611.0 COUNTER BOARDS .
4410.2 CIO- AND PC104-, DO## AND DO##DD SERIES. .
4410.1 CIO-RELAY SERIES .
4410.0 DIGITAL OUTPUT .
439.2 CIO-DISO48 BOARDS .
439.1 CIO- AND PC104- DIxx SERIES BOARDS. .
439.0 DIGITAL INPUT .
428.5 CIO-PDMA16 AND CIO-PDMA32 .
418.4 CIO-, PC104-, AND PCI- PDISO8 AND PDISO16. .
418.3 PCI-DIO48H/CTR15 .
418.2 CIO- AND PCM- DIO24/CTR3, PC-CARD-D24/CTR3. .
408.1 CIO-, PCI-, PC-CARD-, PC104- & PPIO- DIO SERIES BOARDS, CIO- & PCI-DUAL-AC5.
408.0 DIGITAL INPUT / OUTPUT .
397.13 CIO- & PCI-DAS-TC, CIO-DAS-TEMP. .
377.12 PCM-DAS16x/xx & PC-CARD-DAS16/xx SERIES BOARDS.
367.11 PCM-DAS08 BOARD .
357.10 PPIO-AI8 .
347.9 CIO-DAS1400 & CIO-DAS1600 SERIES BOARDS. .
337.8 CIO-DAS48/PGA BOARD .
327.7 CIO- AND PC104- DAS16 SERIES BOARDS. .
317.6 CIO-DAS800 SERIES BOARDS. .
307.5 CIO-DAS08/Jr & CIO-DAS08/Jr/16 BOARDS. .
297.4 CIO-, PCI- AND PC104- DAS08 SERIES BOARDS. .
277.3 PCI-, CIO-DAS6402/## SERIES. .
257.2 PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 series. .
227.1 PCI-DAS4020 series .
227.0 ANALOG INPUT BOARDS .
216.6 PCI-DDA0x/xx SERIES BOARDS. .
216.5 PCM-DAC02 & DAC08 BOARDS .
206.4 cSBX-DDA04 BOARD .
206.3 CIO-DDA06 & DDA06/Jr SERIES. .
196.2 CIO- AND PC104- DAC SERIES (EXCLUDING HS SERIES).
196.1 CIO-DAC04/#-HS SERIES BOARDS. .
196.0 ANALOG OUTPUT BOARDS .
185.8 USING THE RAM DISK .
175.7 INSTALLING A RAM DISK .
175.6 WHAT IS A RAM DISK? .
165.5 SPEEDING UP DISK FILES (DE-FRAGMENTING). .
165.4 HOW TO DETERMINE MAXIMUM SAMPLING SPEED .
165.3 MAXIMUM SAMPLING SPEED .
155.2 HARD DISK VS. RAM DISK FILES .
155.1 OVERVIEW .
155.0 USING THE FILE FUNCTIONS .

5415.0 APPENDIX A. ERROR CODES .
5214.3 DEMO-BOARD .
5214.2 CIO- AND PCM- COM 485. .
5214.1 CIO- AND PCM- COM 422. .
5214.0 OTHER FUNCTIONS .
5113.6 MSSR-24 .
5113.5 MEM-32 .
5113.4 MEM-8 .
5113.3 MII-32 .
5013.2 MIO-32 .
5013.1 ISA-, PCI- and PC104-MDB64 SERIES BOARDS. .
5013.0 METRABUS BOARDS .
5012.2 MEGA-FIFO BOARD .
4912.1 CIO-EXP SERIES BOARDS. .
4912.0 EXPANSION BOARDS .
4811.4 CIO- PCI- AND PCM- QUAD SERIES. .

This page is blank intentionally.

1.0 INTRODUCTION

Congratulations and thank you for your selection of Universal Library. We believe it is the most
comprehensive, easiest to use data acquisition software interface available anywhere. As easy as Universal
Library is to use, significant documentation and explanation is still required to help new users get going,
and allow existing users to take advantage of all the package's powerful features.

The fast changing nature of the software industry makes it very difficult to provide a totally up to date user
guide in written form. Adding to this complexity are the new features and functions that are constantly being
added to the library. To provide the most complete information possible, and at the same time keep the
information current, we offer the Universal Library user guide and documentation in four parts. These are:

1. The Universal Library User's Guide (this document). The user's guide provides a general
description of the UL and offers an overview of the various features and functions and how they
may be used in different operating systems and languages. The user's guide also provides a section
that describes the various functions and features as they pertain to specific ComputerBoards
products.

2. The Universal Library Function Reference. The Function Reference provides complete
details on the features, usage and options of the many Universal Library functions.

3. Example Programs. Perhaps the most valuable, and easiest of all the tools to use. We provide
example programs in all the popular languages that include many of the popular functions. All
of the example programs are fully functional and provided an ideal starting place for your own
programming effort. It's easier to cut-and-paste pieces from a known, working program than
it is to start writing everything from scratch.

4. Read Me Files. The only way to get the absolute, latest, most up to date information to our
users is through Read Me files. We incorporate this information into our main stream
documentation as quickly as we can, but for the latest, greatest information, please take the time
to read the various read me files.

1

2.0 UNIVERSAL LIBRARY DESCRIPTION

The Computer Boards Universal Library is the software that you need to write your own programs that use
any of the Computer Boards data acquisition and control boards.

The library is universal in three ways.

Universal Across Boards - The library contains high level functions for all of the common operations for
all boards. Each of the boards has different hardware but the Universal Library hides these differences from
your program. So, for example, a program written for use with one A/D board will work "as is" with a
different A/D board.

Universal Across Languages - The Universal Library provides the identical set of functions and arguments
for BASIC, C, and Pascal. If you switch languages you won't have to learn a new library, with new syntax,
and different features.

Languages supported by the Universal Library at the time of this manual's publishing are, in both 16 bit and
32 bit where applicable:

Watcom
C++

Hewlett Packard
HP-VEE

Borland Windows Languages
Borland C++
Delphi

Borland DOS Languages
Turbo C
Turbo C++
Borland C++

MicroSoft Windows Languages
Visual Basic
Visual C/C++
Quick C for Windows
Microsoft C

MicroSoft DOS Languages
QuickBasic 4.5
Professional Basic 7.0
Visual Basic for DOS
Quick C

Universal Across Platforms - The Universal Library provides the same set of functions as you switch from
DOS to Windows 3.x to Windows 95 to Windows 98 to Windows NT.

2

3.0 INSTALLATION AND CONFIGURATION

 InstaCAL is ComputerBoards’ powerful installation, test and calibration software package and is shipped
free with every board. It is also installed as part of the Universal Library package installation.

In addition to the information provided here, please also refer to the Software Installation Manual provided
with your disks or CD, and check the read me files on the disk/CD you receive. Due to the rapidly changing
nature of the software world, it is very difficult to keep a totally up to date manual in written form.

3.1 INSTALLATION OVERVIEW

Please use the Software Installation Manual as a guide for installing the Universal Library and Instacal.
Where possible, use the default for all options presented as it will be easier to assist you in the event of a
problem if the default options are selected.

Windows 95 and 98 users are given the option to install the 32-bit library, the 16-bit library or both. Unless
you have a specific reason to choose otherwise, we recommend you install only the 32-bit library (the
default setting).

3.2 INSTALLATION - HP VEE SUPPORT

Please use the Software Installation Manual as a guide for installing the Universal Library and Instacal.
Where possible, use the default for all options presented as it will be easier to assist you in the event of a
problem if the default options are selected.

The modifications made to your system when installing HP VEE Support is identical to the modifications
made when installing the Universal Library with the following exceptions:

y In the directory where VEE resides, the menu bar program VEE.MNU is written (or CBI.MNN,
depending on version).

NOTE: If you are using a custom VEE.MNU, such as the one shipped with DT-VEE, it may be
overwritten by the install program. Please call ComputerBoards technical support for information on
handling multiple custom menu bars.

y In the directory where the VEE programs (examples and your programs) reside, examples are added.
The Universal Library examples for VEE use ComputerBoards’ standard names for examples (see the
chart in the section on examples) with the .VEE extension.

3

Although you are finished installing HP VEE and the drivers to link VEE to ComputerBoards I/O boards,
there is one more step to complete before you can use VEE with an I/O board. You must run the program
InstaCal.Exe and configure the driver. The program InstaCal is an installation, calibration and test program
which creates a required configuration file describing the specifics of the hardware installed.

3.3 The CB.CFG FILE & InstaCAL

All board specific information, including current installed options, are stored in the file CB.CFG which is
read by UniversalLibrary. InstaCal creates and/or modifies this file when board configuration information
is added or updated. The Universal Library will not function without the CB.CFG file. For this reason it is
crucial that you use InstaCAL to modify all board setups and configurations as well as to install or remove
boards from your system.

OVERVIEW OF THE UNIVERSAL LIBRARY
The Universal Library consists of a set of functions that are callable from your program. These functions
are grouped according to their purpose. All of the groups except for Misc. are based on which type of
devices they are used with.

VERY IMPORTANT NOTE
In order to understand the functions, you should read the Board Specific Information
section found elsewhere in this manual and in the readme files supplied on the Universal
Library Disk. We also urge you to examine and run one or more of the example
programs supplied prior to attempting any programming of your own. Following this
advice may save you hours of frustration, and wasted time.

4

4.0 HOW TO USE THE LIBRARY

The Computer Boards Universal Library is callable from Quick BASIC, Professional BASIC, Visual
BASIC, Visual C++, Microsoft C, Quick C, Turbo C, and Borland C++. This chapter describes how to use
the library from each of the languages. The first section of the chapter describes details of the library that
apply to all languages. The following sections describe the differences for each language.

4.1 HOW TO USE THE LIBRARY SUCCESSFULLY

1. Set up and test your boards with InstaCal. The library will not function until InstaCal has created a
configuration file.

2. Use the example programs for the language you program in. This manual explains the functions
and contains other necessary information, but it is incomplete without reference to and review of
the examples.

4.2 GENERAL UL LANGUAGE INTERFACE DESCRIPTION

The interface to all languages is a set of function calls and a set of constants. The list of function calls and
constants are identical for each language. All of the functions and constants are defined in a "header" file
for each language. Refer to the sections below and especially to the example programs for each language.
This manual is brief with respect to details of language use and syntax. The examples must be examined for
this information.

Function Arguments
Each library function takes a list of arguments and returns an error code. Some functions also return data
via their arguments. For example one of the arguments to cbAIn() is the name of a variable in which the
analog input value will be stored. All function arguments that return data are listed in the "Returns:".

Constants
Many functions take arguments that must be set to one of a small number of choices. These choices are all
given symbolic constant names. So for example, TIn() takes an argument called Scale that must be set to
CELSIUS, FAHRENHEIT, or KELVIN. These constant names are defined and assigned a value in the
"header" file for each language. Although it is possible to use the numbers rather than the symbolic
constant names, we strongly recommend that you use the names. This will make your programs more
readable and more compatible with future versions of the library. The numbers may change in future
versions but the symbolic names will always remain the same.

Options Arguments
Some library functions have an argument called Options and all options have a default. Some options have
an alternative, such as, DTCONNECT and NODTCONNECT, one of which is the default value. Other
options do not have a stated alternative. The alternative is the absence of that option. The option argument

5

is used to turn on and off various optional features associated with the function. If you set Options=0 then
the function will set all of these options to the default value, or off.

Individual options can be turned on by adding them to the Options argument. So, for example, Options =
BACKGROUND will turn on the "background execution" feature. Options =
BACKGROUND+CONTINUOUS will select both the "background execution" and the "continuous
execution" feature.

Error Handling
All library functions return an error code. If no error occurred during that library call then the error code
will be set to 0, otherwise it will be set to one of the codes listed in Appendix A.

If a non-zero error code is returned then cbGetErrMsg() can be used to convert the error code to a specific
error message. As an alternative to checking the error code after each function call you may choose to turn
on the library's internal error handling with cbErrHandling().

4.3 USING UNIVERSAL LIBRARY IN WINDOWS

A Windows DLL version of the Universal Library (CBW.DLL) may be called from any language that
supports calls to external 16-bit DLLs. Example programs for Visual Basic and both Borland and MS C
illustrate the use of CBW.DLL. A 32-bit Windows version of the Universal Library (CBW32.DLL) may be
called from any language that supports calls to external 32-bit DLLs.

Due to the differences in memory management among various operating systems, the scan commands have
slightly different argument lists. In DOS libraries all scan commands take a pointer to a data array as one
of their arguments. In the Windows 3.x these functions take a handle to a Windows Global Memory buffer
instead of a pointer to an array. In the 32-bit Windows version, these functions take a pointer (a 32-bit
virtual address) or a handle returned from cbWinBufAlloc(). The affected functions are:

cbAInScan()
cbAOutScan()
cbAPretrig()
cbDInScan()
cbDOutScan()

The Windows library also contains four functions for managing these Windows global memory buffers.
The functions are:

cbWinBufAlloc()
cbWinBufFree()
cbWinArrayToBuf()
cbWinBufToArray()

6

Real Time Operation Under Windows
Real time operation is available from Windows. To operate at full speed under Windows, the A/D board
must have a FIFO buffer. All of ComputerBoards' advanced designs have FIFO buffers. These include the
CIO-DAS80x, CIO-DAS160x, CIO-DAS140x, CIO-DAS16/330x and PCM-DAS16x. All these data
acquisition boards will operate at full speed in real time under Windows. See the note on real time software
calibration and the function cbACalibrateData().

Processor Speed
Processor speed remains a factor for DMA transfers and for real time software calibration. Processors of
less than 150MHz Pentium class may impose speed limits below the capability of the board. See the board
specific information and the notes on real time software calibration.

Visual Basic for Windows
You must include the Universal Library declaration file CBW.BAS in your program. You may do so by
including it in the form that calls the library or add it as a module in your project. Once the declarations for
the UL have been added to your project, you can call the CBW.DLL from any Form's event handlers.

When using 32-bit version of Visual Basic, CBW.BAS references CBW32.DLL to call Universal Library
functions. This is accomplished with conditional compile statements. When using VB3 or older, these
statements must be deleted.

In Visual BASIC there is no way to map a Windows global memory block onto a user array. Because of
this the cbWinArrayToBuf() and cbWinBufToArray() functions must be used to copy data between arrays
and Windows buffers (and vice versa).

Example:
Count& = 100
MemHandle% = cbWinBufAlloc (Count&)
cbAInScan (......,MemHandle%,...)
cbWinBufToArray (MemHandle%, DataArray%(0), 0, Count&)
FOR i = 0 to Count&
PRINT DataArray%(i)
NEXT cbWinBufFree (MemHandle%)

CB.CFG Locations with Visual Basic
All programs that use the Universal Library read the CB.CFG configuration file. Be sure to include a copy
of the CB.CFG configuration file with any compiled stand alone Visual Basic programs you wish to
distribute to another machine or directory.

Visual Basic Example Programs
A complete set of Visual BASIC example programs is included. Each program illustrates the use of one
Universal Library function from within a Visual BASIC program. The .FRM files contain the programs.
The corresponding .MAK file is the Project file which is used to build the program for Visual Basic. The
DLL referenced in the declaration will be cbw.dll (16-bit) or cbw32.dll (32-bit). Conditional compile
statements ("#IF", "#ELSE", "#ENDIF") determine which DLL is used. If your version of VB does not
support these statements, please refer to the instructions in CBW.BAS for removing them.

7

Microsoft Visual C++
To use the Universal Library from Visual C++ for Windows, include the header file CBW.H in your C
program and add the library file CBW.LIB to your project.

When using 32-bit version of Visual C++, you must replace the library file CBW.LIB with CBW32.LIB.
CBW32.LIB uses CBW32.DLL to call Universal Library functions.

Microsoft Visual C++ Example Programs
The Wincai## programs are examples of simple C programs that call the Universal Library. These
programs contain directives for building 16 OR 32 bit applications. You can use the .MAK project files to
build a 16 bit application and the .DSP project files to build a 32 bit application.

Only a few of the Universal Library functions are included in these Window examples. The non-Windows
C examples provide a more complete set of examples. These can be compiled as 32-bit console applications
for Windows 95/98/NT by using the makemc32.bat file.

Borland C/C++ For Windows
The ULAIOx programs are examples of simple C programs that call the Universal Library. You can use the
example project ULAIO1.IDE to build an example program. Simply replace ULAIO1.C with ULAIOx.C in
your project to build on of the other examples. The program expects an 8 channel A/D board. You can
modify the program for the board you own.

When using 16-bit Borland C/C++, use a tool called IMPLIB that came with your computer to generate an
OMF-style import library that your application can link with.

In 32-bit systems users may take advantage of the cbw32bc.lib import library. For 16-bit users IMPLIB
accepts a DLL(CBW.DLL) as input and emits an OMF-style import library (BCBW.LIB). When using
16-bit version of Borland C/C++, you can run IMPLIB on CBW16.DLL to emit a 16-bit OMF-style import
library(BCBW32.LIB).

Borland C/C++ Example Programs
The ULAI01 program is an example of a simple C++ program that calls the Universal Library. To build the
program use ULAI01.PRJ. The program expects an 8 channel A/D board. You can modify the program for
the board you own.

When you build the ULAIOx program the compiler will generate two warning messages which can be
safely ignored. They are,

Parameter 'CmdLine' is never used.
Stack size is less than 1400h. It has been reset to 1400h.

the second of which may be corrected by adding the line STACK = 0x1400 to the WINCDEMO program.
It is not included in the ULAIOx program because it generates an error in MS VC++.

 The non-Windows C examples provide a more complete set of examples. These can be compiled as 32-bit
console applications for Windows 95/98/NT by using the makebc32.bat file.

Delphi Example Programs
A complete set of Delphi example programs is included. Each program illustrates the use of one Universal
Library function from within a Delphi program. The.PAS files contain the programs. The corresponding
.DPR file is the Project file used to build the program in a 16 bit or 32 bit Delphi environment.

8

16 bit Delphi environments use the cbw.dll header. 32 bit Delphi environments use the cbw32.dll header.
Conditionals within the example programs determine which of the DLLs is used.

Where integers are passed by reference to a Universal Library function, you should use the SmallInt data
type in 32 bit environments. The relevant functions are defined this way in the 32 bit header, so if you try
to pass an Integer data type you will get a compiler error.

4.4 USING THE LIBRARY WITH DOS BASIC

Each of the supported versions of BASIC consists of two distinct systems. Programs can be loaded into the
BASIC editor and run from within the integrated BASIC environment. Programs can also be compiled by a
command line compiler into stand-alone executable programs that can be run on their own without the help
of the integrated BASIC environment. The Universal Library provides the tools for both methods.

BASIC Header File
Every BASIC program that uses the Universal Library must have a line which includes the BASIC
Universal Library header file - CB.BI. The following line should appear near the start of every program,
before the first library call is made.

 '$INCLUDE: 'CB.BI'

Using The Library Within The Integrated BASIC Environment
When you start up BASIC you must specify that you want to load the "quick library" version of the
Universal Library.

For Quick BASIC type:
qb /l cbqb

For Professional BASIC type:
qbx /l cbpb

For Visual Basic for DOS, type:
vbdos /l cbvb

Using The Library With The BASIC Command Line Compiler
To build stand-alone executable files with the command line compiler you must link your compiled BASIC
program with the stand-alone version of the Universal Library. To do this you must supply the linker with
the library name.

The names of the .lib files are:
QuickBasic CBQB.LIB
Professional Basic CBPB.LIB
VisualBasic for DOS CBVB.LIB

9

Sample Basic Programs
The sample BASIC programs included demonstrate how to call each function in the Universal Library.
These programs can be run from within the integrated BASIC environment. They can also be compiled
using the command line compiler with the batch file supplied. The names of the batch files are:

QuickBasic MAKEQB.BAT
Professional BASIC MAKEPB.BAT
VisualBasic for DOS MAKEVB.BAT

Passing Arguments to Universal Library
All of the functions in the library require that arguments be passed to them. The file CB.BI contains the
definition of all the argument types that are passed. In general there are two classes of arguments - Inputs
and Outputs.

Input Arguments: All arguments that are only used as inputs to a library function are listed in the CB.BI
file definition as BYVAL. For these arguments you may either pass a variable or a constant. So for
example both of these versions are acceptable:

BoardNum% = 0
cbStopBackground (BoardNum%)

or
cbStopBackground (0)

Output Arguments: Some arguments are used by the library to pass information back to the caller. For
example, the value from an A/D is returned by cbAIn() to the DataValue% argument. Others are used as
both inputs and outputs. For example, the Rate& argument specifies the requested sampling rate for
cbAInScan() (Input). The actual sampling rate may vary from the requested sampling rate so the actual rate
is returned by cbAInScan() to the Rate& argument (Output).

Output and Input/Output arguments are defined in the CB.BI function definitions as SEG. All SEG
arguments may only be passed via a variable. For example:

Count& = 1000
Rate& = 15000
cbAInScan (0, 0, 1, Count&, Rate&, BIP5VOLTS, DataArray(0), 0)

is correct, but,

cbAInScan (0, 0, 1, 1000, 15000, BIP5VOLTS,DataArray(0), 0)

is NOT correct.

10

DataArray Argument with Multiple Channels
Various functions have a DataArray argument. The DataArray either receives the data from an input
function such as cbAInScan, or contains the data to be sent to an output function such as cbAOutScan().

The DataArray must be DIMensioned to be large enough to contain all of the data. The array can either be
dimensioned with a single dimension or two dimensions. When sampling more than one channel it is often
more straightforward to use a multiple dimensioned array. The code below shows both methods:

DIM DataBuffer (1999) 'One dimensional array. 0 to 1,999 (2,000) elements.
OR

DIM DataBuffer (1, 999) 'Two dimensional array. 0 & 1 with 0-999 (1,000) elements each.

LowChan% = 2
HighChan% = 3
Count& = 2000
Rate& = 1000
cbAInScan (0, LowChan%, HighChan%, Count&, Rate&, BIP5VOLTS, DataBuffer(0), 0)

OR
cbAInScan (0, LowCan%, HighChan%, Count&, Rate&, BIP5VOLTS, DataBuffer(0, 0), 0)

The advantage of using the multi-dimesioned array is that you can directly address the data in the array by
channel. So in the example above - DataBuffer (0,99) addresses the 100th sample for channel 2 (channel 2
was the first element in the array; LowChan%).

Using String Arguments
cbGetErrMsg() requires that a string variable be passed as an argument. This string variable must have
been previously allocated to be large enough to hold the longest error message. To do this use Quick
BASIC's space$ function as it is done in the example program.
 ErrStr$ = space$ (ERRSTRLEN)

Integer Arguments
BASIC does not support unsigned integer (0-65,535). Values for the integer data type range from -32-768
to 32,767. When using functions that require unsigned integers the data must be converted. See your
BASIC manual for details.

BACKGROUND operation
If you use the BACKGROUND option with any function then you must declare the associated data array as
'$STATIC.
Unless you declare an array as '$STATIC, BASIC may move the array around in memory as the program is
executing. Whenever you use the BACKGROUND option the I/O function reads/writes from the data
array in the background while the BASIC program continues executing in the "foreground". If BASIC
moves the array while the I/O function is reading/writing it, you will cause intermittent and unpredictable
problems.

cbStopBackground() should be executed after normal termination of all background functions in order to
clear variables and flags.

11

4.5 USING THE LIBRARY WITH VISUAL BASIC FOR DOS

Compiling Stand Alone EXE files
Due to a quirk in Visual Basic for DOS, if you compile a stand alone EXE file from within the IDE and you
set the EXE type to "Stand alone EXE file", you will get the following message: "fixup overflow at 334 in
the segment -TEXT target external 'B$CEND'". The compiled program will run without error. It appears
that the error message is an error.

4.6 USING THE LIBRARY WITH C FOR DOS

The C libraries included with the system can be used with either the Microsoft or Borland C compilers.

C Header File
Every C program that uses the Universal Library must have a line which includes the Universal Library C
header file - CB.H. The following line should appear near the start of every program, before the first library
call is made.

 #include "cb.h"

Memory Models
Both Borland and Microsoft C compilers support different memory models. The Universal Library comes
with the following three versions of the library.
 CBCC.LIB - For use with compact model
 CBCS.LIB - For use with small model
 CBCM.LIB - For use with medium model
 CBCL.LIB - For use with large and huge model

Large Data Arrays
The Universal Library supports input and output from very large (> 64K) amounts of data. If your program
requires storage and transfer of large single data sets, you must compile it for the "huge" model and use the
CBCL.LIB library. If you declare an array to hold the data, it should be declared __huge. If you allocate
memory (as is done in the example programs using malloc) it should be allocated using _halloc (Microsoft)
or halloc (Borland), the pointer declared as __huge and the memory freed using _hfree (Microsoft) or hfree
(Borland). Note that you must also include the malloc.h header.

Compiling The Sample C Programs
The example programs demonstrate how to call each of the Universal Library functions from a C program.
Two batch files are provided that show how to compile and link the sample programs using the Microsoft
and Borland compilers.
MAKEMC16.BAT - compile and link with Microsoft C
MAKETC16.BAT - compile and link with Borland C

12

4.7 USING THE LIBRARY WITH HP VEE

The Universal Library for HP VEE includes a complete interface to HP VEE providing a CBI specific
menu bar addition and functions as well as complete example of all the library functions.

To understand how the interface to HP VEE interacts with I/O boards you will need to study both this
manual and the example programs. This manual is written for symbolic programming languages such as
BASIC and C. VEE is a graphical programming language.

It is very important that you scan the entire manual for information that relates to general performance.
Remember, VEE is using the Universal Library as the interface to the I/O boards; the entire library.
Limitations and performance factors in the library are reflected in VEE programs that use the library. The
manual contains much related information, like most manuals, scattered throughout. We encourage you to
review the entire manual.

The Universal Library interface to VEE follows the structure of the library as it is used with all other
languages. The arguments presented here in symbolic format are the same arguments you will need to
specify when using VEE to control an I/O board. The manual explains the functions and each of the
arguments. The VEE examples show how the function is interfaced to VEE and show how to use the
function to control the I/O boards.

There is one exception to this rule. The programming argument MemHandle is replaced in VEE with the
argument DataArray. Vee allocates data arrays directly. Windows programming languages use another
method of pointing to data arrays. In addition to a name change, there is some VEE programming logic
done to dimension a two dimensional data array for all multichannel operations. This logic can be seen by
examining the design view of the function.

Each function is implemented as a panel. All the arguments are accessible on the panel and require a value.
In the example programs and in simple projects this method of presenting the functions is easiest to use.
Each value is hard coded into the panel.

When more complex projects are undertaken it will make sense to open the design view of the function and
drag certain arguments outside the panel. Dragging an object outside the panel will create a ‘pin’ to which
you can connect constants, variable or objects such as slider bars. In large projects the ability to supply an
argument with a variable that acquires its value elsewhere is especially useful. See the VEE manual for
information on how to do this.

See the example ULAI06.VEE for an example of multiple use of several arguments where it is better to
specify the argument values globally. In this example we have brought several arguments out of the panel.

Remember, if you drag an argument outside a panel you must reconnect the program flow (top and bottom
pins) of the remaining arguments; the one above to the one below the argument you removed.

13

New HP VEE Functions
Several new functions have been added strictly for use with HP VEE. These functions are listed separately
in a section devoted to the VEE specific functions. All VEE specific functions begin with the name cbv,
rather than cb . The new functions add VEE style data and array handling to the library.

Using the HP VEE interface is simple and a great way to connect your VEE programs to the real world.
Read the manual, start with the examples, then begin working up your own projects. Remember to call us
with suggestions!

Must Install Universal Library in Default Directory
The HP VEE library import block CBI_UL contains an exact path specification for the library CBV.DLL
and its header file CBV.H. If you do not install these files into the default directory suggested by the install
program you will have to edit the library import block CBI_UL to point to the directory where the files are
installed.

To edit the library import block, click on the CBI-DataAcq menu item then click on its cbLibrary sub-menu
item. Place the mouse cursor at the desired location for the library import block and press the left mouse
button once. Double click the library import block object. A detailed CBI_UL library block will be
displayed. Within the CBI_UL library block, click on the button to the right of File Name. Enter the new
path with the file name and click OK. Next click on the button to the right of Definition File. Enter the new
path with the file name and click OK.

If using VEE 3.2 or Later
If you are using VEE 3.2 or later, please edit the library import block and change the library name from
CBV.DLL to CBV32.DLL. Be sure to include the proper path.

14

5.0 USING THE FILE FUNCTIONS

One of the features of the ComputerBoards Universal Library is the ability to collect very large amounts of
data to a "streamer" file. The amount of data that can be collected is limited only by the size of your hard
disk.

Once all of the data has been streamed to a file your program can read it back into arrays and process it in
chunks. This feature is particularly useful when using the Universal Library from DOS, where memory is
limited.

5.1 OVERVIEW

The library contains four functions that are used with "streamer" files. cbFileAInScan() and cbFilePretrig()
read the A/D and store the data in a "streamer" file. cbFileGetInfo() returns information about the
streamer file. cbFileRead() reads data from a "streamer" file to an array.

In addition to these library functions the library comes with three utility programs for use with the 16 bit
version of the library- MAKESTRM.EXE, FRAGTEST.EXE and RDSTREAM.EXE. These utilities are
not compatible with the 32 bit version of the library.

MAKESTRM creates a "streamer" file. This program should be run if using the 16 bit version of the
library to allocate a file large enough to hold all of the data that will be later collected with
cbFileAInScan() or cbFilePretrig().

The syntax is C:\MAKESTRM filename # <enter>

FRAGTEST checks an existing disk file to see if it is fragmented. In order to run at the faster sampling
rates the "streamer" file must not be fragmented. Refer to "Speeding up Disk Files" below for more
information.

The syntax is C:\FRAGTEST filename <enter>

RDSTREAM reads a "streamer" file created by MAKESTRM and prints its contents on the screen.
The syntax is C:\RDSTREAM filename <enter>

5.2 HARD DISK VS. RAM DISK FILES

The simplest type of files to use is a standard DOS file on a hard disk. The advantage of hard disk files is
that they can be very large. The file size is only limited by the amount of free space on the disk. Hard
disk files have the disadvantage of being slower than RAM disks. RAM disk (or virtual disk) files are
faster but they are limited in size by the amount of available memory in your computer.

15

5.3 MAXIMUM SAMPLING SPEED

The maximum sustainable sampling rate that can be specified with the cbFile functions is very hard to
predict. It depends on the speed of the CPU and the speed of the disk.

In addition to the variation in sampling speed from machine to machine there can also be variations on the
same machine between consecutive operations of the same program. When reading an A/D to memory
(non-streaming modes) there is a hard and fast maximum sampling speed that can not be exceeded. When
using the streaming modes the maximum rate is much fuzzier and must be arrived at by trial and error.

A rough guideline of attainable speeds are that on a 33 MHz 80386 machine with a fast hard disk it should
be possible to collect a megabyte of data at 200 kHz sampling rate to a disk file. It should also be possible
to collect a megabyte of data to a RAM disk at 330 kHz.

In general the maximum sustainable speed for cbFilePretrig() will be somewhat less than for
cbFileAInScan().

Another characteristic of these "streaming" modes is that the more data you collect the lower the maximum
speed will be. On any machine with any speed disk you can collect 32000 samples to a disk file at the
maximum A/D speed of 330 kHz. If you are pushing the upper limits of speed you will find that you can
collect 100k samples at a faster rate than you can collect 500k samples, etc.

5.4 HOW TO DETERMINE MAXIMUM SAMPLING SPEED

The only way to determine the maximum safe speed is to try it repeatedly. Remember if it works the first
time it will not necessarily work the next time. Therefore the only way to be sure that you can reliably run
at a particular speed is to try it numerous times or else increase the speed to the point where it begins to
fail every time so that you get some sense of whether or not you are pushing the speed limit on your
computer.

To test it, write a program that calls cbFileAInScan() or cbFilePretrig() (depending on whether you need
pre-trigger data). Check the error code that is returned. If you get an OVERRUN error (error code of 29)
it means that the sampling rate is too high. Whenever you get OVERRUN error, some data was collected
but not all of it. It is often useful to check how much data was collected to find out whether it was almost
fast enough or not even close.

5.5 SPEEDING UP DISK FILES (DE-FRAGMENTING)

Because of the way that disks work, the time that it takes to write to them can vary tremendously. A large
disk file is made up of many small pieces that are written individually to the disk. If the file is contiguous
(each piece is side by side) the speed is very fast. If the file is fragmented (pieces are in different places on
the disk) the speed is much slower. If you create a large disk file the odds are overwhelming that it will

16

be fragmented to some degree and the maximum sampling speed will be much lower than it would be for
an unfragmented file.

To get around this problem you should use a Disk Optimizer or De-fragmenter program immediately
before creating the streamer file with MAKESTRM. Once you create the streamer file it will remain
unfragmented so long as you don't erase it and recreate it.

Probably the most widely known Disk Optimizer program comes as part of the Norton Utilities, it is called
Speed Disk or SD. To run it type: SD /Q

This will execute the "Quick" optimize, which for these purposes works as well as the Full Optimization.

After de-fragmenting the disk create a streamer file that is large enough to hold as much data as you plan to
collect with cbFileAInScan() or cbFilePretrig(). To create the disk file run the standalone
MAKESTRM.EXE program. This will create a streamer file of the required size.

Once the file is created run FRAGTEST.EXE to see whether or not the file is fragmented. It is possible
that the file may be fragmented even though you just de-fragmented the disk. The reason for this is that
the disk may contain some bad sectors which could not be moved when the disk was optimized. When
you create the new file if it hits one of these bad sectors it has to skip over it, hence fragmention.

If FRAGTEST reports that the file is fragmented create a second file and test that with FRAGTEST.
Repeat this until FRAGTEST reports that the file is OK. Once you have an unfragmented disk file you can
try using it with cbFileAInScan() or cbFilePretrig() to collect data. If the maximum sampling speed is still
too slow you should probably switch to a RAM disk.

5.6 WHAT IS A RAM DISK?

A RAM disk is not really a disk. It is a device driver that sets aside some of the computer's memory and
makes it appear to DOS as a disk drive. When you install a RAM disk on your computer it appears
exactly as if you have another VERY fast hard disk drive. For example if you have one hard disk - drive
C: then when you install the RAM disk it will appear as if you have another hard disk - drive D:

Once the RAM disk is installed all DOS commands work exactly the same on the RAM disk as on the hard
disk. For example you can COPY, DEL, MKDIR, CD just as you would on a hard disk.

5.7 INSTALLING A RAM DISK

The RAM disk driver comes with DOS. Refer to your DOS manual for more information. In older
versions of DOS it is called either RAMDRIVE.SYS or VDISK.SYS. To install it you must add one line
to your \CONFIG.SYS file. Find which directory the DOS files are installed in on your machine. CD to
that directory and look for a file called RAMDRIVE.SYS or VDISK.SYS. If it is not there look at the
other .SYS files in the directory and refer to your DOS manual to find out if any of them are a RAM Disk
driver. Once you have located the file add an entry to the \CONFIG.SYS file.

17

If the RAMDRIVE.SYS file was in a directory called DOS then you would add the following line to the
\CONFIG.SYS file.

device=c:\dos\ramdrive.sys

The default size for the RAM disk is usually 64K. You will almost certainly want to make it larger than
that. The larger you make it the more data you can collect but the less memory will be available for other
programs.

To set up a 4 megabyte RAM disk you would add the following line to your CONFIG.SYS file:

device=c:\dos\ramdrive.sys 4000

If your computer is an 80x86 then you should install the RAM disk in extended memory (above 1M) by
specifying the /e option: device=c:\dos\ramdrive.sys 4000 /e

Once you add the new line to the \CONFIG.SYS file, reboot the computer (Press CTRL-ALT-DEL) to
install the RAM disk. When the machine reboots it should print a message on the screen describing the
RAM disk.

5.8 USING THE RAM DISK

To use the RAM disk you just specify the drive letter in the FileName argument of cbFileAInScan() or
cbFilePretrig(). For example if the RAM disk is drive D: on you system then you could set the name of
the "streamer" file in your program to "d:TEST.DAT"

This file can be created with the MAKESTRM.EXE program supplied with the UniversalLibrary.

To set up a file large enough to hold 1 million samples, include this line in your AUTOEXEC.BAT file:

C:\CB\MAKESTRM D:\TEST.DAT 1000000

The name TEST.DAT is an example. Use the name of your preference.

When you execute cbFileAInScan() or cbFilePreTrig() it will fill up the file on your RAM drive. This file
will be lost as soon as the power is switched off so if you wish to keep the data you must copy it to the
hard disk before turning the computer off.

18

6.0 ANALOG OUTPUT BOARDS

All boards that have analog outputs support the cbAOut() and cbAOutScan() functions. Boards released
after the printing of this manual will be described in readme files on the Universal Library disk.

cbAOutScan() is designed primarily for boards that support hardware paced analog output but it is also
useful when simultaneous update of all channels is desired, or for setting the initial value on certain boards
that support the “zero power-up state”. If the hardware is configured for simultaneous update, this function
loads each DAC channel with the appropriate value before issuing the update command.

6.1 CIO-DAC04/#-HS SERIES BOARDS

Analog Output
Functions: cbAOut(), cbAOutScan()
Options: BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS
HighChan: 0 to 3
Rate: 500 kHz
Pacing: Hardware pacing, external or internal clock supported.

Note: The external clock input is hardwired to the DAC pacer. If an internal clock is to
be used, do not connect a signal to the ExtPacer input.

Digital I/O
Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()
PortNum: AUXPORT
DataValue: 0 to 255
BitNum: 0 to 7

6.2 CIO- AND PC104- DAC SERIES (EXCLUDING HS SERIES)

Analog Output
Functions: cbAOut(), cbAOutScan()
Options: SIMULTANEOUS
HighChan: DAC02: 0 to 1, DAC06: 0 to 5, DAC08: 0 to 7, DAC16: 0 to 15
Count: HighChan - LowChan + 1 max
Rate: Ignored
Range: Ignored
Pacing: Software only

19

6.3 CIO-DDA06 & DDA06/Jr SERIES

Analog Output
Functions: cbAOut(), cbAOutScan()
Options: SIMULTANEOUS
HighChan: 0 to 5
Count: HighChan - LowChan + 1 max
Rate: Ignored
Range: Ignored
Pacing: Software only

Digital I/O
Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()
PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTC
BitNum: 0 to 23 using FIRSTPORTA

Note: When using the CIO-DDA06 “zero power-up state” hardware option, use cbAOutScan to set the
desired output value and enable the DAC outputs.

6.4 cSBX-DDA04 BOARD

Analog Output
Functions: cbAOut(), cbAOutScan()
Options: BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS
HighChan: 0 to 3 or NOTUSED
Rate: 300,000
Pacing: Hardware pacing, external or internal clock supported.

Digital I/O
Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDOutScan(), cbDInScan()
PortNum: AUXPORT
DataValue: 0 to 255 using cbDIn() or cbDInScan(), 0 to 16383
BitNum: 0 to 7 using cbDBitIn(), 0 to 13 using cbDBitOut()
Rate: 500 kHz (see note)
Pacing: Hardware

Note: The cSBX-DDA4 boards allows interleaving of analog and digital output data. In order to support
interleaving, a control bit, the MSB of each 16 bit word of analog or digital data indicates the data type.
MSb = 0 for analog data and MSB = 1 for digital data. The data is passed to the board and then directed to
the correct output type by hardware on the board which detects and acts on the MSB control bit. To use
this interleaving capability with the Universal Library, set HighChan and LowChan to NOTUSED and
indicate the data type and channel in the most significant four bits of the data values in DAData().

20

6.5 PCM-DAC02 & DAC08 BOARDS

Analog Output
Functions: cbAOut(), cbAOutScan()
Options: SIMULTANEOUS
HighChan: DAC02: 0 to 1, DAC08: 0 to 7
Count: HighChan - LowChan + 1 max
Rate: Ignored
Range: The PCM-DAC08 has a fixed gain at ±5 volts so the Range argument to analog output

functions is ignored.
PCM-DAC02:
BIP10VOLTS (± 10 volts) BIP5VOLTS (± 5 volts)
UNI10VOLTS (0 to 10 volts) UNI5VOLTS (0 to 5 volts)

Pacing: Software only

Digital I/O
Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()
PortNum: FIRSTPORTA, FIRSTPORTB
DataValue: 0 to 15 using PORTA or PORTB
BitNum: 0 to 7 using FIRSTPORTA

Supports 2 configurable 4 bit ports - FIRSTPORTA and FIRSTPORTB. Each may be independently
configured as either Inputs or Outputs via cbDConfigPort().

6.6 PCI-DDA0x/xx SERIES BOARDS

Analog Output
Functions: cbAOut(), cbAOutScan()
Options: SIMULTANEOUS
HighChan: DDA02: 0 to 1, DDA04: 0 to 3, DDA08: 0 to 7
Count: HighChan - LowChan + 1 max
Rate: Ignored
Range: BIP10VOLTS (± 10 volts) BIP5VOLTS (± 5 volts)

BIP2PT5VOLTS (± 2.5 volts)
UNI10VOLTS (0 to 10 volts) UNI5VOLTS (0 to 5 volts)
UNI2PT5VOLTS (0 to 2.5 volts)

Pacing: Software only

Digital I/O
Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()
PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH,

SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 47 using FIRSTPORTA

21

7.0 ANALOG INPUT BOARDS

All boards that have analog inputs support the cbAIn() and cbAInScan() functions (except expansion boards
which support cbAIn() only). Boards released after the printing of this manual will be described in readme
files on the Universal Library disk.

In cases where hardware paced A/D conversion is not supported, cbAInScan() loops through software paced
conversions. The scan will execute at the maximum speed possible. This speed will vary with CPU speed.
The only valid option in this case is CONVERTDATA.

If trigger support is ‘Polled gate’ (as opposed to ‘Hardware’), this indicates that the ‘trigger’ is implemented
by disabling the on-board pacer by gating it. The trigger input is then polled continuously until the trigger
occurs. When that happens the software disables the gate input so that when the trigger returns to its
original state, it does not affect the pacer and acquisition continues until the requested number of samples
has been acquired. There are two ‘side effects’ to this type of trigger... 1) The polling portion of the
function does not occur in the background even if the BACKGROUND option was specified (although the
actual data acquisition does). 2) The trigger does not necessarily occur on the rising edge. Acquisition can
start at any time after the function is called if the trigger input is at ‘active’ level. For this reason, it is best
to use a trigger that goes active for a much shorter time than inactive.

Sampling rate using SINGLEIO: When using this mode of data transfer, the maximum analog sampling
rate is dependent on the speed of the computer in which the board is installed. In general it is somewhere in
the range of 5-50 kHz. If the speed you request cannot be sustained, an overrun error will occur. Data will
be returned, but there will likely be gaps. Some boards, such as the CIO-DAS08 support only this mode so
the maximum rate attainable with these boards will be system dependent.

7.1 PCI-DAS4020 series

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(), cbFilePretrig()
Options: BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO,

DMAIO, BLOCKIO (PACKET SIZE: at least 2048 - see details on chain and packet
size below), EXTTRIGGER.

HighChan: 3 max (when scanning multiple channels, the number of channels scanned must be
even)

Rate: 20 MHz (maximum)
Range: BIP5VOLTS (± 5 Volts)

BIP1VOLTS (± 1 Volts)
Pacing: Hardware pacing, external or internal clock supported. The clock source may be set

via InstaCAL to either the “Trig/Ext Clk” BNC input or the “A/D External Clock”
input on the 40 pin connector (P3).

22

When EXTCLOCK option is used, the clock signal presented to the “Trig/Ext Clk”
BNC input or the “A/D External Clock” input is divided by 2 by the prescaler. This
value is currently fixed at 2 in the Universal Library.
When using EXTCLOCK on the PCI-DAS4020 SERIES, the Rate argument IS
USED by the Universal Library (on most boards, it is ignored when using the
EXTCLOCK option). Set the Rate argument to the approximate rate the external
clock will be pacing acquisitions so that the appropriate chain size can be calculated
(see explanation below).

Triggering Digital (TTL) hardware triggering supported. The trigger source may be set via
Instacal to either the “Trig/Ext Clk” BNC input, the “A/D Start Trigger” input on the
40 pin connector or the “A/D Stop Trigger” input on the 40 pin connector (P3). The
A/D Start Trigger input is the appropriate source to use for most Universal Library
functions. The exception to this rule is when using the cbAPretrig or cbFilePretrig
functions. In these cases, use the A/D Stop Trigger input. cbSetTrigger() is
supported for TRIGPOSEDGE, TRIGNEGEDGE
Analog hardware triggering supported. The trigger source may be set via Instacal to
any of the analog BNC inputs. cbSetTrigger() supported for TRIGBELOW,
TRIGABOVE.

Gating Digital (TTL) hardware gating supported. The gate source may be set via Instacal to
either the “Trig/Ext Clk” BNC input or the “A/D Pacer Gate” input on the 40 pin
connector (P3). cbSetTrigger() supported for GATEHIGH, GATELOW
Analog hardware gating supported. cbSetTrigger() supported for GATENEGHYST,
GATEPOSHYST, GATEABOVE, GATEBELOW, GATEINWINDOW,
GATEOUTWINDOW.
Gate must be in the active (enabled) state before starting a acquisition.

Note: When using both EXTCLOCK and EXTTRIGGER options, one of the signals (either
clock or trigger) must be assigned to the Trig/Ext Clk BNC input.

Note: In order to achieve the maximum sample rate under some conditions, a contiguous area
of memory must be set up. The following is a guide that can be used to determine
whether or not you need to set up this memory and how to accomplish it using InstaCal.

If the number of samples you are acquiring is less than 2k (1,024) samples then you do not
need to set up contiguous memory (the "Contiguous Mem" edit box in InstaCal may be left at
zero). If you are acquiring more than 2k samples and the rate required is 2 MHz or greater,
use the table below to determine if contiguous memory is required. If contiguous memory is
required, follow the procedure below to set up contiguous memory.

If the field "Contiguous Memory" indicates "Required", you need to allocate contiguous
memory for the total number of data points you need to acquire. This can be accomplished
using InstaCal as follows:

1) Run Instacal and click the "Configure" tab.
2) In the "Contiguous Mem" edit box, type in the amount of memory in Kilo Bytes that you
need for acquisition.

23

3) Reboot the machine. The Universal Library will reserve the contiguous memory at bootup
time.
4) To change or free the contiguous memory, repeat step 1 through 3 specifying the new
size.

Not Required2k1k0.6>Rate
Not Required4k2k2>Rate>=0.6

Required64k32k4>Rate>=2
Required128k64k20>=Rate>=44

Not Required2k1k2>Rate
Not Required4k2k3>Rate>=2

Required64k32k7>Rate>=3
Required128k64k20>=Rate>=72

Not Required2k1k3>Rate
Not Required4k2k5>Rate>=3

Required64k32k14>Rate>=5
Required128k64k20>=Rate>=141

Contiguous MemoryPacket SizeSamples/ChainRate in MHz# of Channels

There are two special cases where you need to be aware of packet size and adjust the number
of samples acquired accordingly:

1) cbAPretrig: The total number of samples must be greater than one packet size and an equal
multiple of packet size.

2) cbAInScan with CONTINUOUS scan option: The total number of samples must be greater
than one packet size and an equal multiple of packet size.

The user buffer is partitioned into memory blocks. A chain refers to one block of the user
memory . Its size is measured in A/D samples and is determined by the speed of acquisition.
The table above provides the relationship between acquisition rate and number of samples per
chain. A packet refers to the number of samples transferred at a time. The Universal Library
transfers data when enough data has been acquired to fill two chains.

As an example, to run cbAInScan on one channel at 18 MHz with the CONTINUOUS option
set, determine the chain size from the chart to be 64k (since the Rate is between 14 and 20
MHz). From special case 2 above, the contiguous memory should be set up for at least
enough space for two packets (256k). Therefore, the number you would enter in the
"Contiguous Mem" edit box in InstaCal would be 256. The value for the cbAInScan Count
argument would be 262,144 (256 * 1024).

24

Analog Output
Functions: cbAOut(), cbAOutScan()
Options: NONE
HighChan: 1 max
Count: 2
Rate: Ignored
Range: The 4020/12 supports the following Range arguments:

BIP10VOLTS (± 10 volts)
BIP5VOLTS (± 5 volts)

Pacing: Software only

Digital I/O

Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()
PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH
DataValue: 0 to 15 for PORTC, 0 to 255 for FIRSTPORTA or FIRSTPORTB
BitNum: 0 to 3 for PORTC, 0 to 7 for FIRSTPORTA or FIRSTPORTB

7.2 PCI-DAS1602, PCI-DAS1200 & PCI-DAS1000 series

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(), cbFilePretrig()
Options: BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO,

BLOCKIO (PCI-DAS1602/16 packetsize: 256, all others PACKET SIZE: 512),
BURSTMODE, EXTTRIGGER

HighChan: 15 max (7 differential)
Rate: DAS1602/12: 330,000; DAS1602/16: 200,000, DAS1200 and DAS1200Jr: 330,000;

DAS1000: 150,000
Range: PCI-DAS1602/12, PCI-DAS1602/16, PCI-DAS1200, PCI-DAS1200Jr

BIP10VOLTS (± 10 volts) UNI10VOLTS (0 to 10 volts)
BIP5VOLTS (± 5 volts) UNI5VOLTS (0 to 5 volts)
BIP2PT5VOLTS (± 2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)
BIP1PT25VOLTS (± 1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

PCI-DAS1001:
BIP10VOLTS (± 10 volts) BIP1VOLTS (± 1 volts)
BIPPT1VOLTS (± 0.1 volts) BIPPT01VOLTS (± 0.01 volts)
UNI10VOLTS (0 to 10 volts) UNI1VOLTS (0 to 1 volts)
UNIPT1VOLTS (0 to 0.1 volts) UNIPT01VOLTS (0 to 0.01 volts)

Pacing: Hardware pacing, external or internal clock supported.

25

Triggering & Gating:
DAS1602 Series:
Digital (TTL) and analog hardware triggering supported. cbSetTrigger() supported
for TRIGABOVE, TRIGBELOW, GATENEGHYS, GATEPOSHYS,
GATEABOVE, GATEBELOW,GATEINWINDOW, GATEOUTWINDOW,
GATEHIGH, GATELOW, TRIGPOSEDGE, TRIGNEGEDGE

Note: Analog thresholds are set relative to the 10V Bipolar range. For example, a threshold of
0 equates to -10 Volts, a threshold of 65535 equates to +9.999695 Volts.

DAS1200, DAS1000 Series:
Digital (TTL) hardware triggering supported.

Analog Output
Functions: cbAOut(), cbAOutScan() (except for PCI-DAS 1200Jr - no analog output)

DAS1602 Series
Options: BACKGROUND, CONTINUOUS, EXTCLOCK, SIMULTANEOUS
HighChan: 1 max
Rate: PCI-DAS1602/16: 100,000, PCI-DAS1602/12: 250,000
Pacing: Hardware pacing, external or internal clock supported.
Triggering & Gating:

Digital (TTL) hardware gating supported.

Notes: When using analog trigger feature, one or both of the DACs are unavailable for other
functions. If the trigger function requires a single reference (GATE_ABOVE,
GATE_BELOW, TRIGABOVE, TRIGBELOW) then DAC0 is available. If the trigger
function requires two references (GATE_IN_WINDOW, GATE_ OUT_WINDOW,
GATE_NEG_HYS, GATE_ POS_HYS) then neither DAC is available for other
functions.

DAS1200, DAS1000 Series
Options: SIMULTANEOUS
HighChan: 1 max
Count: 2
Rate: Ignored
Pacing: Software only
Range: BIP10VOLTS (± 10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (± 5 volts) UNI5VOLTS (0 to 5 volts)

Digital I/O
Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()
PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTC
BitNum: 0 to 23 FIRSTPORTA

26

Counter I/O
Functions: cbC8254Config(), cbCIn(), cbCLoad()
CounterNum: 1 to 6

7.3 PCI-, CIO-DAS6402/## SERIES

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig(), cbAPretrig(), cbFileAInScan(), cbFilePretrig()
Options: BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO,

BLOCKIO (PACKET SIZE: 512 for CIO-, 2048 for PCI-), BURSTMODE,
EXTTRIGGER.

Note: When using both EXTCLOCK and BURSTMODE on the PCI-DAS6402/16, do not use
the A/D External Pacer (pin 42) to supply the clock. Use the A/D Start Trigger In (pin
45) input instead.

Note: When using cbAPretrig() or cbFilePretrig() on the PCI-DAS6402/16, use the A/D Stop
Trigger In (pin 47) input to supply the trigger.

HighChan: 63 max (31 differential)
Rate: CIO-DAS6402/12: 330 kHz; CIO-DAS6402/16: 100 kHz; PCI-DAS6402/16: 200

kHz
Range: BIP10VOLTS (± 10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (± 5 volts) UNI5VOLTS (0 to 5 volts)
BIP2PT5VOLTS (± 2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)
BIP1PT25VOLTS (± 1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

Pacing: Hardware pacing, external or internal clock supported.
Triggering & Gating:

Digital (TTL) hardware triggering supported. cbSetTrigger() supported for
GATEHIGH, GATELOW, TRIGPOSEDGE, TRIGNEGEDGE for CIO- version.

PCI- version also supports analog hardware triggering. cbSetTrigger() supported for
TRIGABOVE, TRIGBELOW, GATENEGHYST, GATEPOSHYST,
GATEABOVE, GATEBELOW, GATEINWINDOW, GATEOUTWINDOW.

Note: When using analog trigger feature, one or both of the DACs are used to set the threshold
and are unavailable for other functions. If the trigger function requires a single
reference (GATEABOVE, GATEBELOW, TRIGABOVE, TRIGBELOW) then DAC0 is
available. If the trigger function requires two references (GATEINWINDOW, GATE
OUTWINDOW, GATENEGHYS, GATEPOSHYS) then neither DAC is available for
other functions.

Analog Output
CIO- versions
Functions: cbAOut(), cbAOutScan()
Options: SIMULTANEOUS

27

HighChan: 1 max
Count: 2
Rate: Ignored
Range: The CIO-DAS6402/16 has hardware-selectable gain so the Range argument to

the analog output functions is ignored
The 6402/12 supports the following Range arguments:
BIP10VOLTS (± 10 volts) UNI10VOLTS (0 to 10 volts)
BIP5VOLTS (± 5 volts) UNI5VOLTS (0 to 5 volts)

Pacing: Software only

PCI- versions
Functions: cbAOut(), cbAOutScan()
Options: SIMULTANEOUS
HighChan: 1 max
Count: Not limited
Rate: up to 100,000
Range: BIP10VOLTS (± 10 volts) UNI10VOLTS (0 to 10 volts)

BIP5VOLTS (± 5 volts) UNI5VOLTS (0 to 5 volts)
Pacing: Hardware pacing, external or internal clock supported.
Triggering & Gating:

Digital (TTL) hardware triggering supported. cbSetTrigger() supported for
GATEHIGH, GATELOW, TRIGPOSEDGE, TRIGNEGEDGE.

Analog hardware triggering. cbSetTrigger() supported for TRIGABOVE,
TRIGBELOW. Note: When using analog trigger feature, one of the DACs is used to
set the threshold and is unavailable for other functions.

Digital I/O
Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

CIO- versions
PortNum: AUXPORT
DataValue: 0 to 255
BitNum: 0 to 7

PCI- versions
PortNum: AUXPORT, FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH
DataValue: 0 to 15 for AUXPORT or PORTC, 0 to 255 for FIRSTPORTA or FIRSTPORTB
BitNum: 0 to 3 for AUXPORT or PORTC, 0 to 7 for FIRSTPORTA or FIRSTPORTB

Counter I/O
Functions: cbC8254Config(), cbCIn(), cbCLoad()
CounterNum: 1 to 3

28

7.4 CIO-, PCI- AND PC104- DAS08 SERIES BOARDS

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig()
Options: BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO,

EXTTRIGGER
HighChan: 7
Rate: 50 kHz (See note regarding SINGLEIO at the beginning of the ANALOG INPUT

BOARDS section.
Range: DAS08: The DAS08 does not have programmable gain so the Range argument to

analog input functions is ignored.

DAS08-PGH and DAS08-AOH support the following A/D ranges:
BIP10VOLTS (± 10 volts) UNI10VOLTS (0 to 10 volts)
BIP5VOLTS (± 5 volts) UNI1VOLTS (0 to 1 volts)
BIP1VOLTS (± 1 volts) UNIPT1VOLTS (0 to 0.1 volts)
BIPPT5VOLTS (± 0.5 volts) UNIPT01VOLTS (0 to 0.01 volts)
BIPPT1VOLTS (± 0.1 volts) BIPPT01VOLTS (± 0.01 volts)
BIPPT05VOLTS (± 0.05 volts) BIPPT005VOLTS (± 0.005 volts)

CIO-DAS08-PGL and CIO-DAS08-AOL support the following A/D ranges:
BIP10VOLTS (± 10 volts) BIP5VOLTS (± 5 volts)
BIP2PT5VOLTS (± 2.5 volts) BIP1PT25VOLTS (± 1.25 volts)
BIPPT625VOLTS (± 0.625 volts)
UNI10VOLTS (0 to 10 volts) UNI5VOLTS (0 to 5 volts)
UNI2PT5VOLTS (0 to 2.5 volts) UNI1PT25VOLTS (0 to 1.25 volts)

PCI-DAS08 supports the BIP5VOLTS (± 5 volts) A/D range only.

Pacing: Hardware pacing, external or internal clock supported.
Triggering & Gating:

Digital (TTL) polled gate triggering supported.
Notes: Before using the timed analog input function cbAInScan() the output of counter 1

must be wired to the Interrupt input or, if you have a DAS08 rev 3 or higher, a
jumper is provided on the board to accomplish this. An interrupt level must have
been selected in InstaCal and the CB.CFG file saved.

Analog Output
Functions: cbAOut(), cbAOutScan() (DAS08-AOL, DAS08-AOH & DAS08-AOM only)
Options: SIMULTANEOUS
HighChan: 1 max
Rate: Ignored
Count: 2 max
Range: Ignored
Pacing: Software pacing only

29

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: AUXPORT
DataValue: 0 to 15 using cbDOut(), 0 to 7 using cbDIn()
BitNum: 0 to 3 using cbDBitOut(), 0 to 2 using cbDBitIn()

CIO-DAS08 and CIO-DAS08-AOx also support the following
PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTC
BitNum: 0 to 23 using FIRSTPORTA

Counter I/O
Functions: cbC8254Config(), cbCIn(), cbCLoad()
CounterNum: 1 to 3

7.5 CIO-DAS08/Jr & CIO-DAS08/Jr/16 BOARDS

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig()
Options: CONVERTDATA
HighChan: 7
Rate: These boards do not have a timer so the Rate argument to the analog scanning

functions is ignored.
Range: These boards do not have programmable gain so the Range argument is ignored.
Pacing: Software pacing only supported.

Analog Output
Functions: cbAOut(), cbAOutScan() if the optional D/A converters are installed on the board.
Options: SIMULTANEOUS
HighChan: 1 max
Rate: Ignored
Count: 2 max
Range: Ignored
Pacing: Software pacing only

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: AUXPORT
DataValue: 0 to 255
BitNum: 0 to 7

Counter I/O
Functions: These boards do not have any counters so do not support any of the counter

functions.

30

7.6 CIO-DAS800 SERIES BOARDS

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan
Options: BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO,

BLOCKIO (PACKET SIZE: 128), EXTTRIGGER
HighChan: 7 max
Rate: DAS800,DAS801,DAS802: 50,000; DAS802/16: 100,000
Range: DAS800: Range is not programmable so the Range argument is ignored.

DAS801 supports the following A/D ranges:
BIP10VOLTS (± 10 volts) BIP5VOLTS (± 5 volts)
BIP1VOLTS (± 1 volts) BIPPT5VOLTS (± 0.5 volts)
BIPPT05VOLTS (± 0.05 volts) BIPPT01VOLTS (± 0.01 volts)
UNI10VOLTS (0 to 10 volts) UNI1VOLTS (0 to 1 volts)
UNIPT1VOLTS (0 to 0.1 volts) UNIPT01VOLTS (0 to 0.01 volts)

DAS802 supports the following A/D ranges:
BIP10VOLTS (± 10 volts) BIP5VOLTS (± 5 volts)
BIP2PT5VOLTS (± 2.5 volts) BIP1PT25VOLTS (± 1.25 volts)
BIPPT625VOLTS (± 0.625 volts)
UNI10VOLTS (0 to 10 volts) UNI5VOLTS (0 to 5 volts)
UNI2PT5VOLTS (0 to 2.5 volts) UNI1PT25VOLTS (0 to 1.25 volts)

DAS802/16 supports the following A/D ranges:
BIP10VOLTS (± 10 volts) BIP5VOLTS (± 5 volts)
BIP2PT5VOLTS (± 2.5 volts) BIP1PT25VOLTS (± 1.25 volts)
UNI10VOLTS (0 to 10 volts) UNI5VOLTS (0 to 5 volts)
UNI2PT5VOLTS (0 to 2.5 volts) UNI1PT25VOLTS (0 to 1.25 volts)

Pacing: Hardware pacing, external or internal clock supported.
Triggering & Gating: Digital hardware triggering supported.

Analog Output
Functions: These boards do not have D/A converters and do not support analog output

functions.

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: AUXPORT
DataValue: 0 to 15 using cbDOut(), 0 to 7 using cbDIn
BitNum: 0 to 3 using cbDBitOut(), 0 to 2 using cbDBitIn()

Counter I/O
Functions: cbC8254Config(), cbCIn(), cbCLoad()
CounterNum: 1 to 3

31

7.7 CIO- AND PC104- DAS16 SERIES BOARDS

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig()

The DAS16/330, DAS16/330i, DAS16/M1 and DAS16/M1/16 also support the
following: cbAPretrig(), cbFileAInScan(), cbFilePretrig()
The DAS16/330i and DAS16/M1 also support cbALoadQueue()

Options: BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA,
EXTTRIGGER
The DAS16/330, DAS16/330i, DAS16/M1 and DAS16/M1/16 also support the
following: DTCONNECT, BLOCKIO (PACKET SIZE: 512), EXTMEMORY
The DAS16, DAS16/F, DAS16/Jr, DAS16/Jr/16 and PC104-DAS16Jr series also
support the following: SINGLEIO, DMAIO

The DAS16/M1/16 also supports BURSTMODE
HighChan: 7 max for DAS16/M1 and DAS16/M1/16, 15 max (7 differential) for all others in

this series.
Rate: 1 MHz for DAS16/M1 & DAS16/M1/16, 330 kHz for DAS16/330 & 330i, 160 kHz

for PC104-DAS16Jr/12, 130 kHz for CIO-DAS16Jr, 100 kHz for DAS16/F &
DAS16Jr/16 and 50 kHz for DAS16

CAUTION!
The full 1 MHz rate may not be achievable on some systems when using
the timed analog functions with CIO-DAS16/M1 to acquire more than
2048 data points. On slow machines, these functions may hang if scan
rate is fast (generally in the range of 500 - 700 kHz). The maximum
rate can be determined by passing in different high rates until the
maximum rate is achieved without hanging the system. If the full
1 MHz rate is required, consider adding a MEGA FIFO memory board
and specifying the EXTMEMORY option on the call to cbAInScan().

Range: CIO-DAS16 and CIO-DAS16F do not have programmable gain so the Range
argument to analog input functions is ignored.

All other boards in this series support the following ranges:
BIP5VOLTS (± 5 volts) UNI10VOLTS (0 to 10 volts)
BIP2PT5VOLTS (± 2.5 volts) UNI5VOLTS (0 to 5 volts)
BIP1PT25VOLTS (± 1.25 volts) UNI2PT5VOLTS (0 to 2.5 volts)

UNI1PT25VOLTS (0 to 1.25 volts)

All programmable gain boards in this series except the DAS16/M1/16 support
BIP10VOLTS (± 10 volts)

All programmable gain boards in this series except the CIO-DAS16Jr/16 and
PC104-DAS16Jr/16 support BIPPT625VOLTS (± 0.625 volts)

32

Pacing: Hardware pacing, external or internal clock supported.
Triggering & Gating:

DAS16/M1/16: Digital (TTL) hardware triggering supported. cbSetTrigger()
supported for GATEHIGH, GATELOW, TRIGPOSEDGE, TRIGNEGEDGE
All others in this series support digital (TTL) polled gate triggering.

Notes: The DMAIO option can not be used while using the chan/gain queue on the DAS-330i
board.

Analog Output
Functions: cbAOut(), cbAOutScan() (CIO-DAS16 & CIO-DAS16/F only)
Options: SIMULTANEOUS
HighChan: 1 max
Rate: Ignored
Count: 2 max
Range: Ignored
Pacing: Software pacing only

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()

CIO-DAS16 & 16/F, CIO-DAS16/M1 and CIO-DAS16/M1/16 also support
cbDConfigPort()

PortNum: AUXPORT
DataValue: 0 to 15
BitNum: 0 to 3

CIO-DAS16 & 16/F, CIO-DAS16/M1 and CIO-DAS16/M1/16 also support
FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, and FIRSTPORTCH.

DataValue: 0 to 255 for PORTA and PORTB, 0 to 15 for PORTCL & PORTCH
BitNum: 0 to 23 using FIRSTPORTA

Counter I/O
Functions: cbC8254Config(), cbCIn(), cbCLoad()
CounterNum: 1 to 3; CIO-DAS16/M1/16 also supports counter numbers 4 through 6 with counter

4 being the only independent user counter.

7.8 CIO-DAS48/PGA BOARD

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig()
Options: CONVERTDATA
HighChan: 47 (23 differential)
Rate: This board does not have a timer so the Rate argument to the analog scanning

functions is ignored.

Range: The board may be configured with a jumper for either voltage or current input.

33

The voltage input ranges are:
BIP10VOLTS (± 10 volts) BIP5VOLTS (± 5 volts)
BIP2PT5VOLTS (± 2.5 volts) BIP1PT25VOLTS (± 1.25 volts)
BIPPT625VOLTS (± 1.625 volts)
UNI10VOLTS (0 to 10 volts) UNI5VOLTS (0 to 5 volts)
UNI2PT5VOLTS (0 to 2.5 volts) UNI1PT25VOLTS (0 to 1.25 volts)

The current input ranges are:
MA4TO20 (4 to 20ma) MA2TO10 (2 to 10ma)
MA1TO5 (1 to 5ma) MAPT5TO2PT5 (0.5 to 2.5ma)

Analog Output
The CIO-DAS48/PGA board does not support the analog output functions.

Digital I/O
 The CIO-DAS48/PGA does not support any of the digital I/O functions.

Counter I/O
 The CIO-DAS48/PGA does not support any of the counter I/O functions.

7.9 CIO-DAS1400 & CIO-DAS1600 SERIES BOARDS

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig()
Options: BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO,

DMAIO, BURSTMODE, EXTTRIGGER
Note: Specifying SINGLEIO while also specifying BURSTMODE is not
recommended.
The CIO-DAS1600 series also supports DTCONNECT & EXTMEMORY

Note: When EXTMEMORY is used with the CIO-DAS1600 the cbGetStatus function will not
return the current count and current index. This is a limitation imposed by maintaining
identical registers to the KM-DAS1600.

HighChan: 15 max (7 differential)
Rate: DAS1401/12, DAS1402/12, DAS1601/12, DAS1602/12: 160 kHz; DAS1602/16,

DAS1402/16: 100 kHz
DAS1401/12, DAS1402/12, DAS1601/12, DAS1602/12 to external memory (DT
Connect): 330 kHz

Range: CIO-DAS1402, CIO-DAS1602, CIO-DAS1402/16 and CIO-DAS1602/16
BIP10VOLTS (± 10 volts) UNI10VOLTS (0 to 10 volts)
BIP5VOLTS (± 5 volts) UNI5VOLTS (0 to 5 volts)
BIP2PT5VOLTS (± 2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)
BIP1PT25VOLTS (± 1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

34

CIO-DAS1401 and CIO-DAS1601
BIP10VOLTS (± 10 volts) BIP1VOLTS (± 1 volts)
BIPPT1VOLTS (± 0.1 volts) BIPPT01VOLTS (± 0.01 volts)
UNI10VOLTS (0 to 10 volts) UNI1VOLTS (0 to 1 volts)
UNIPT1VOLTS (0 to 0.1 volts) UNIPT01VOLTS (0 to 0.01 volts)

Note: The CIO-DAS1400 and CIO-DAS1600 A/D ranges are configured with a combination of
a switch (Unipolar / Bipolar) and a programmable gain code. The state of this switch is
set in the configuration file using InstaCal. Once the UNI/BIP switch setting is selected,
only matching ranges may be used in Universal Library programs.

Pacing: Hardware pacing, external or internal clock supported.
Triggering & Gating:

External digital (TTL) polled gate trigger supported.

Analog Output
Functions: cbAOut(), cbAOutScan() (CIO-DAS1600 series only)
Options: SIMULTANEOUS
HighChan: 1 max
Count: 2
Rate: Ignored
Pacing: Software pacing only
Range: Analog output gain is not programmable so Range argument is ignored.

Digital I/O
Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut()

DAS1600 series also supports cbDConfigPort()
PortNum: AUXPORT
DataValue: 0 to 15
BitNum: 0 to 3

DAS1600 series also supports the following:
PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, FIRSTPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTC
BitNum: 0 to 23 using FIRSTPORTA

Counter I/O
Functions: cbC8254Config(), cbCIn(), cbCLoad()
CounterNum: 1 to 3

7.10 PPIO-AI8

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig()

35

Options: CONVERTDATA
HighChan: 7
Rate: Ignored
Range: This board does not have programmable gain so the Range argument to analog input

functions is ignored
Pacing: Software pacing

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: AUXPORT
DataValue: 0 to 15 using cbDOut(), 0 to 7 using cbDIn()
BitNum: 0 to 3 using cbDBitOut(), 0 to 2 using cbDBitIn()

7.11 PCM-DAS08 BOARD

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig()
Options: BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO,

NOTODINTS, EXTTRIGGER, NOCALIBRATEDATA
HighChan: 7
Rate: 24 kHz max (see hardware manual for other restrictions)
Range: This board does not have programmable gain so the Range argument to analog input

functions is ignored.
Pacing: Internal or external clock

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: AUXPORT
DataValue: 0 to 7
BitNum: 0 to 2

MAXIMIZING SAMPLING RATES
Although the PCM-DAS08 is capable of 25 kHz analog to digital conversions, not all
computers in all configurations can transfer the converted samples fast enough to sustain a 25
kHz sample and transfer rate without missing some samples. This is especially true in a
Windows environment. Unfortunately, there isn't much you can do to improve sampling rates
in Windows, but in DOS, where you have more control over process, you may be able to
attain the full 25 kHz sampling rate.

Determining Maximum Sampling Rates in DOS
If you have installed the DOS version of the Universal Library, a utility program called
MAXRATE will have been installed in the UL directory (C:\CB by default).

MAXRATE will test your computer and advise you of the maximum sustainable convert and
transfer rate.

36

The maximum rate for your computer will be reported for two conditions. The first is with all
interrupts enabled, the second is with the time of day interrupt disabled (TOD). The convert
and transfer rate with TOD disabled will usually be faster.

What has the Time of Day interrupt got to do with A/D conversions?
Many TSR’s and device drivers “hook” into the TOD interrupt. Using the TOD clock tick
guarantees that every 1/18th of a second the routine will be woken up and can check status or
do whatever the routine is designed to do. Unfortunately this can create considerable
overhead in the TOD interrupt service routine and will introduce gaps in your sample data at
high rates.

Using the cbAinScan0 option argument to turn off the TOD interrupt will increase the speed
you can maintatin with you PCM-DAS08. Turning off the TOD will also prevent your
computer’s clock from incrementing while cbAlnScan0 is running. Your clock will lose time.

At what speed might there be a concern with my computer’s transfer rate?
Any rate below 5KHz is sustainable with or without TOD interrupt enabled if your maximum
required rate is less than 5KHz then your computer can do that.

If your required rate is greater that 10K you should run MAXRATE.

Remember, we are discussing the TOTAL rate, not the per channel rate. If you want 3
channels at 5 kHz, the total rate is 15 kHz and you should run MAXRATE to see if your
computer is up to the task.

What about background operation?
MAXRATE tests your computer using the cbAInScan() routine in the foreground. If you
choose background operation it may not sustain the maximum rate returned by MAXRATE.

For the fastest performance use cbAInScan() in the foreground with the TOD interrupt
disabled.

7.12 PCM-DAS16x/xx & PC-CARD-DAS16/xx SERIES BOARDS

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()
Options: BACKGROUND, CONTINUOUS, EXTCLOCK, CONVERTDATA, SINGLEIO,

BLOCKIO (packet size: 256 for), NOTODINTS, EXTTRIGGER,
NOCALIBRATEDATA

HighChan: 15 (16S and 16/330), 7 (16D)
Rate: 330 kHz for 16/330, 200 kHz single channel for PC-CARD-DAS16/16 series, 100

kHz for all others in this series
Range: The DAS16x/12 boards support the following A/D ranges:

BIP10VOLTS (± 10 volts) UNI10VOLTS (0 to 10 volts)

37

BIP5VOLTS (± 5 volts) UNI5VOLTS (0 to 5 volts)
BIP2PT5VOLTS (± 2.5 volts) UNI2PT5VOLTS (0 to 2.5 volts)
BIP1PT25VOLTS (± 1.25 volts) UNI1PT25VOLTS (0 to 1.25 volts)

The DAS16x/16 boards support the following A/D ranges:
BIP10VOLTS (± 10 volts) BIP5VOLTS (± 5 volts)
BIP2PT5VOLTS (± 2.5 volts) BIP1PT25VOLTS (± 1.25 volts)
The DAS16/330 board supports the following A/D ranges:
BIP10VOLTS (± 10 volts) BIP5VOLTS (± 5 volts)

Pacing: Internal or external clock
Triggering & Gating:

External digital (TTL) polled gate trigger supported on the PCM versions.
External digital (TTL) hardware trigger supported on the PC-CARD versions.

Analog Output
PCM-DAS16D/12AO and PC-CARD-DAS16/xx-AO only
Functions: cbAOut(), cbAOutScan()
Options: SIMULTANEOUS (PCM version only)
HighChan: 1 max
Count: 2
Rate: Ignored
Range: PC-CARD-DAS16/16-AO & PCM-DAS16D/12AO: BIP10VOLTS (± 10 volts),

BIP5VOLTS (± 5 volts)
PC-CARD-DAS16/16-AO: BIP10VOLTS (± 10 volts)

Pacing: Software pacing only

Digital I/O
PCM-DAS16D/12-AO

Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()
PortNum: FIRSTPORTA, FIRSTPORTB
DataValue: 0 to 15 using PORTA or PORTB
BitNum: 0 to 7 using FIRSTPORTA

PC-CARD-DAS16/xx-AO
Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()
PortNum: FIRSTPORTA
DataValue: 0 to 15 using PORTA
BitNum: 0 to 3 using FIRSTPORTA

Counter I/O
Functions: cbC8254Config(), cbCIn(), cbCLoad()
CounterNum: 1 to 3

38

7.13 CIO- & PCI-DAS-TC, CIO-DAS-TEMP

Temperature Input
Functions: cbTIn(), cbTInScan()
Options: NOFILTER
Scale: CELSIUS, FARENHEIT, KELVIN
HighChan: 0 to 15 for DAS-TC, 0 to 31 for DAS-TEMP

Note: When using cbTInScan() with the DAS-TC, an open thermocouple error
(OPENCONNECTION) on any of the channels will cause all data to be returned as
-9999.0. This is a hardware limitation. If your application requires isolating channels
with defective thermocouples attached and returning valid data for the remainder of the
channels, use the cbTIn() function instead of cbTInScan().

39

8.0 DIGITAL INPUT / OUTPUT

This chapter provides details on using ComputerBoards digital I/O boards in conjunction with the Universal
Library. Boards released after the printing of this manual will be described in readme files on the Universal
Library disk.

Note on Basic signed integers: When reading or writing ports that are 16 bits wide, you should be aware of
the following issues using signed integers (as you are forced to do when using Basic): On some boards (the
PDISO16 for example) the AUXPORT digital ports are set up as one 16 bit port. When using cbDOut(),
the digital values are written as a single 16 bit word. Using signed integers, writing values above 0111
1111 1111 1111 (32767 decimal) can be confusing. Then next increment, 1000 0000 0000 0000 has a
decimal value of -32768. Using signed integers, this is the value that you would use for turning on the MSB
only. The value for all bits on is -1. Keep this in mind if you are using Basic, since Basic does not supply
unsigned integers (values from 0 to 65536).

8.1 CIO-, PCI-, PC-CARD-, PC104- & PPIO- DIO SERIES BOARDS, CIO- &
PCI-DUAL-AC5

Digital I/O
Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()

All boards in this series support:
PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL and FIRSTPORTCH.
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 23 using FIRSTPORTA

DIO48, DIO48H, DIO96, DIO192 and DUAL-AC5 also support:
PortNum: SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 47 using FIRSTPORTA

DIO96 and DIO192 also support:
PortNum: THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH,

FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 95 using FIRSTPORTA

DIO192 also supports:
PortNum: FIFTHPORTA through EIGHTHPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 191 using FIRSTPORTA

40

8.2 CIO- AND PCM- DIO24/CTR3, PC-CARD-D24/CTR3

Digital I/O
Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()
PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL and FIRSTPORTCH. DataValue: 0 to

255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 23 using FIRSTPORTA

Counter I/O
Functions: cbC8254Config(), cbCIn(), cbCLoad()
CounterNum: 1 to 3
Note: On the PCM board the counter source functions are programmable using InstaCal.

8.3 PCI-DIO48H/CTR15

Digital I/O
Functions: cbDOut(), cbDIn(), cbDBitIn(), cbDBitOut(), cbDConfigPort()
PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTC, FIRSTPORTCH. SECONDPORTA,
SECONDPORTB, SECONDPORTCL, SECONDPORTCH. DataValue: 0 to 255 using PORTA or
PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 23 using FIRSTPORTA

Counter I/O
Functions: cbC8254Config(), cbCIn(), cbCLoad()
CounterNum: 1 to 15

8.4 CIO-, PC104-, AND PCI- PDISO8 AND PDISO16

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: AUXPORT
DataValue: PDISO8: 0 to 255, PDISO16: 65535 (see note on Basic signed integers at the beginning

of the DIGITAL INPUT / OUTPUT section)
BitNum: PDISO8: 0 to 7, PDISO16: 0 to 15

41

8.5 CIO-PDMA16 AND CIO-PDMA32

Digital I/O
Functions: cbDInScan(), cbDOutScan(), cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut(),

cbDConfigPort()
PortNum: AUXPORT, FIRSTPORTA, and FIRSTPORTB.
DataValue: 0 to 7 using AUXPORT (cbDOut() only supported), 0 to 255 using PORTA and

PORTB, 0 to 65535 using WORDXFER PORTA.
BitNum: 0 to 2 using AUXPORT (cbDBitOut() only supported), 0 to 15 using PORTA.

Rate: CIO-PDMA16: 125 KWords, CIO-PDMA32: 750 KWords

Options: BACKGROUND, CONTINUOUS, EXTCLOCK, WORDXFER

Pacing: Hardware pacing, external or internal clock supported.

Counter I/O
Functions: cbC8254Config(), cbCIn(), cbCLoad()
CounterNum: 1 to 3

42

9.0 DIGITAL INPUT

This chapter provides details on using ComputerBoards digital input boards in conjunction with the
Universal Library. Boards released after the printing of this manual will be described in readme files on the
Universal Library disk.

9.1 CIO- AND PC104- DIxx SERIES BOARDS

Digital I/O
Functions: cbDIn, cbDBitIn()

All boards in this series support:
PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL and FIRSTPORTCH.
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 23 using FIRSTPORTA

DI48, DI96 and DI192 also support:
PortNum: SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 47 using FIRSTPORTA

DI96 and DI192 also support:
PortNum: THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH,

FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 95 using FIRSTPORTA

DI192 also supports:
PortNum: FIFTHPORTA through EIGHTHPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 191 using FIRSTPORTA

9.2 CIO-DISO48 BOARDS

Digital I/O
Functions: cbDIn, cbDBitIn()
PortNum: FIRSTPORTA, SECONDPORTA, THIRDPORTA, FOURTHPORTA, FIFTHPORTA,

SIXTHPORTA
DataValue: 0 to 255
BitNum: 0 to 7 using FIRSTPORTA

43

10.0 DIGITAL OUTPUT

This chapter provides details on using ComputerBoards digital output boards in conjunction with the
Universal Library. Boards released after the printing of this manual will be described in readme files on the
Universal Library disk.

10.1 CIO-RELAY SERIES

Digital I/O
Functions: cbDOut(), cbDBitOut()

All boards in this series support:
PortNum: FIRSTPORTA
DataValue: 0 to 255
BitNum: 0 to 7 using FIRSTPORTA

CIO-RELAY16 & 16/M also support:
PortNum: FIRSTPORTB
DataValue: 0 to 255
BitNum: 0 to 15 using FIRSTPORTA

CIO-RELAY24 also supports:
PortNum: SECONDPORTA
DataValue: 0 to 255
BitNum: 0 to 23 using FIRSTPORTA

CIO-RELAY32 also supports:
PortNum: SECONDPORTB
DataValue: 0 to 255
BitNum: 0 to 31 using FIRSTPORTA

10.2 CIO- AND PC104-, DO## AND DO##DD SERIES

Digital I/O
Functions: cbDOut(), cbDBitOut()

All boards in this series support:
PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL and FIRSTPORTCH.
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 23 using FIRSTPORTA

44

DO48H, DO48DD, DO96H and DO192H also support:
PortNum: SECONDPORTA, SECONDPORTB, SECONDPORTCL, SECONDPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 47 using FIRSTPORTA

DO96H and DO192H also support:
PortNum: THIRDPORTA, THIRDPORTB, THIRDPORTCL, THIRDPORTCH,

FOURTHPORTA, FOURTHPORTB, FOURTHPORTCL, FOURTHPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 95 using FIRSTPORTA

DO192H also supports:
PortNum: FIFTHPORTA through EIGHTHPORTCH
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL or PORTCH
BitNum: 0 to 191 using FIRSTPORTA

45

11.0 COUNTER BOARDS

This chapter provides details on using ComputerBoards counter/timer boards in conjunction with the
Universal Library. Boards released after the printing of this manual will be described in readme files on the
Universal Library disk.

Note on Basic signed integers: When reading or writing ports that are 16 bits wide, you should be aware of
the following issues using signed integers (as you are forced to do when using Basic): On some boards (the
CIO-CTR10 count register or AUXPORT digital ports for example) the ports are 16 bits wide. When
accessing the data at these ports, the digital values are arranged as a single 16 bit word. Using signed
integers, values above 0111 1111 1111 1111 (32767 decimal) can be confusing. Then next increment,
1000 0000 0000 0000 has a decimal value of -32768. Using signed integers, this is the value that is
returned from a 16 bit counter at half of maximum count. The value for full count (just before the counter
turns over) is -1. Keep this in mind if you are using Basic, since Basic does not supply unsigned integers
(values from 0 to 65535) or unsigned longs (values from 0 to 4,294,967,295).

11.1 CIO-, PCI-, PC104- AND cSBX CTR SERIES

Counter I/O
Functions: cbC9513Config(), cbC9513Init(), cbCStoreOnInt(), cbCFreqIn(), cbCIn(), cbCLoad()

ALL BOARDS in this series support:
CounterNum: Counters 1 to 5
RegName: LOADREG1 through LOADREG5, HOLDREG1 through HOLDREG5,

ALARM1CHIP1 and ALARM2CHIP1
LoadValue: Values up to 65,535 (216 - 1) may be used. (See note on Basic signed integers at the

beginning of the COUNTER BOARDS section.)

CTR10, CTR10-HD and CTR20-HD also support
CounterNum: Counters 6 through 10
RegName: LOADREG6 through LOADREG10, HOLDREG6 through HOLDREG10,

ALARM1CHIP2 and ALARM2CHIP2

CTR20-HD also supports
CounterNum: Counters 11 through 20
RegName: LOADREG11 through LOADREG20, HOLDREG11 through HOLDREG20,

ALARM1CHIP3 and ALARM2CHIP3, ALARM1CHIP4 and ALARM2CHIP4

46

Digital I/O
CTR05 and CTR10 support:
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: AUXPORT
DataValue: CTR05: 0 to 255, CTR10: 0 to 65535 (See note on Basic signed integers at the

beginning of the COUNTER BOARDS section.)
BitNum: CTR05: 0 to 7, CTR10: 0 to 15

11.2 CIO-, AND PCI- INT32

Counter I/O
Functions: cbC8536Config(),cbC8536Init(), cbCIn(), cbCLoad()
CounterNum: 1 to 6
ChipNum: 1 or 2
RegName: LOADREG1 through LOADREG6
LoadValue: Values up to 65,535 (216 - 1) may be used. (See note on Basic signed integers at the

beginning of the COUNTER BOARDS section.)
Note: These boards have two 8536 chips, which have both counter and digital I/O and

interrupt vectoring capabilities. The numbers above apply when both chips are
configured for the maximum number of counter devices.

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: FIRSTPORTA, FIRSTPORTB, FIRSTPORTCL, SECONDPORTA, SECONDPORTB

and SECONDPORTCL.
DataValue: 0 to 255 using PORTA or PORTB, 0 to 15 using PORTCL
BitNum: 0 to 39 using FIRSTPORTA
Note: These boards have two 8536 chips, which have both counter and digital I/O and interrupt

vectoring capabilities. The numbers above apply when both chips are configured for the
maximum number of digital ports.

47

11.3 PPIO-CTR06 BOARDS

Counter I/O
Functions: cbC8254Config(), cbCIn(), cbCLoad()
CounterNum: 1 to 6
RegName: LOADREG1 through LOADREG6
LoadValue: Values up to 65,535 (216 - 1) may be used. (See note on Basic signed integers at the

beginning of the COUNTER BOARDS section.)

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: AUXPORT
DataValue: 0 to 15 or 0 to 255, depending on jumper setting
BitNum: 0 to 3 or 0 to 7, depending on jumper setting

11.4 CIO- PCI- AND PCM- QUAD SERIES

Counter I/O
Functions: cb7266Config(), cbCIn, cbCIn32, cbLoad, cbLoad32, cbCStatus()
CounterNum: 1 to 2 - PCM-QUAD02, CIO-QUAD02

1 to 4 - CIO-QUAD04, PCI-QUAD04
RegName: COUNT1, COUNT2, PRESET1, PRESET2, PRESCALER1 , PRESCALER2

CIO-QUAD04, PCI-QUAD04 also support COUNT3, COUNT4, PRESET3, PRESET4,
PRESCALER3, PRESCALER4

LoadValue: When using cbCLoad32() to load the COUNT# or PRESET# registers, values up to 16.78
million (224 - 1) may be loaded. Values using cbCLoad() are limited to 65,535 (216 - 1).
(See note on Basic signed integers at the beginning of the COUNTER BOARDS section.)
When loading the PRESCALER# register, values may be from 0 to 255. (Digital Filter
Clock frequency = 10 MHz / LoadValue + 1.)

48

12.0 EXPANSION BOARDS

This chapter provides details on using ComputerBoards expansion boards in conjunction with the Universal
Library. Boards released after the printing of this manual will be described in readme files on the Universal
Library disk.

EXP boards are only used in combination with an A/D board. Channel numbers for accessing the
EXPansion boards begin at 16. To calculate the channel number for access to EXP channels, use the
following formula:

Chan = (ADChan + 1) * 16 + EXPChan

where EXPChan is a number ranging from 0 to 15 that describes the channel number on a particular bank of
the expansion board. An EXP32 has two banks so the channel numbers for one EXP32 connected to an
A/D board would range from 16 to 47.

If all A/D channels are not used for EXP output, direct input to the A/D board is still available at these
channels (using channel numbers below 16).

When expansion boards are used for temperature input, the gain of the A/D board must be set to a specific
range. When using A/D boards with programmable gain, the Universal Library takes care of this detail.
However, when using boards with switch-selectable gains, they should be set by the user to a range that
depends on the temperature sensor in use. Generally, thermocouple measurements require the A/D board to
be set to 5V bipolar if available (or 10V bipolar if not). RTD sensors require a setting of 10V unipolar if
available. These checks are made when you are configuring the system for temperature measurement using
Instacal.

12.1 CIO-EXP SERIES BOARDS

Analog Input
Functions: cbAIn(),cbTIn(), cbTInScan()
Options: NOFILTER
HighChan: From 0 up to 255, depending on the number of boards connected and the application.
Rate: This board does not have a timer so the Rate argument to the analog scanning functions is

ignored.
Range: This argument applies to the A/D board to which the EXP board is connected. It is

ignored if the A/D board does not have programmable gain (see ANALOG INPUT
BOARDS section)

49

12.2 MEGA-FIFO BOARD

Memory I/O (Used only in combination with a board which has DT-Connect.)
Functions: cbMemSetDTMode(), cbMemReset(), cbMemRead(), cbMemWrite(),

cbMemReadPretrig()

Some of these functions are integrated into the cbAInScan() function. For example, if the MEGA-FIFO is
used with an A/D board and the EXTMEMORY option is selected then the functions cbMemSetDTMode()
and cbMemWrite() would not have to be called. Continuous-mode cannot be used with the EXTMEMORY
option.

13.0 METRABUS BOARDS

This chapter provides details on using ComputerBoards MetraBus system boards in conjunction with the
Universal Library. The MetraBus system is made up of at least one controller board that communicates with
real world interface boards via a data bus (ribbon cable). The implication is that there will always be two or
more boards in the system.

13.1 ISA-, PCI- and PC104-MDB64 SERIES BOARDS

This series makes up the controller portion of the MetraBus system. The Universal Library contains no
function to communicate specifically with this board. The functions in the library are directed to the
devices on the bus, instead. For example, if this board was installed in Instacal as board 0, and an MII-32
was installed as board 1, the communication would be directed to board 1. If you wanted to read digital bits
from this configuration, the function would be cbDBitIn(). The value of the BoardNum argument would be
1.

13.2 MIO-32

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: FIRSTPORTA, FIRSTPORTB, SECONDPORTA, SECONDPORTB
DataValue: 0 to 255
BitNum: 0 to 7
Note: Although this is a digital output only board, the state of the outputs can be read back using the
cbDIn() and cbDBitIn() functions.

50

13.3 MII-32

Digital I/O
Functions: cbDIn(), cbDBitIn()
PortNum: FIRSTPORTA, FIRSTPORTB, SECONDPORTA, SECONDPORTB
BitNum: 0 to 7

13.4 MEM-8

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: FIRSTPORTA
DataValue: 0 to 255
BitNum: 0 to 7

Note: Although this is a digital output only board, the state of the outputs can be read back using the
cbDIn() and cbDBitIn() functions.

13.5 MEM-32

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: FIRSTPORTA, FIRSTPORTB, SECONDPORTA, SECONDPORTB
DataValue: 0 to 255
BitNum: 0 to 7

Note: Although this is a digital output only board, the state of the outputs can be read back using the
cbDIn() and cbDBitIn() functions.

13.6 MSSR-24

Digital I/O
Functions: cbDIn(), cbDOut(), cbDBitIn(), cbDBitOut()
PortNum: FIRSTPORTA, FIRSTPORTB, SECONDPORTA
DataValue: 0 to 255
BitNum: 0 to 7

51

14.0 OTHER FUNCTIONS

14.1 CIO- AND PCM- COM 422

No library functions are supported for these boards, but Instacal may be used to configure the serial
protocol in conjunction with the Set422.exe utility. All other serial communications are handled by DOS or
Windows standard serial communications handlers.

14.2 CIO- AND PCM- COM 485

Supports cbRS485() for controlling the transmit and receive enable register. All other serial communications
are handled by DOS or Windows standard serial communications handlers.

14.3 DEMO-BOARD

The DEMO-BOARD is a software simulation of a data acquisition board. It simulates analog input and
digital I/O.

Analog Input
Functions: cbAIn(), cbAInScan(), cbATrig(), cbFileAInScan()
Options: BACKGROUND, CONTINUOUS, SINGLEIO, DMAIO
HighChan: 7 max
Rate: 300000

DEMO-BOARD simulates 8 channels of 16-bit analog input. Instacal is used to configure the waveforms on
the analog input channels. Choices are: sine wave, square wave, saw-tooth, ramp, damped sine wave, and
input from a data file.

The data file is a streamer file, so any data that has been previously saved in a streamer file can be used as a
source of demo data by the board. Data files are named DEMO0.DAT through DEMO7.DAT. When a data
file is assigned to a channel the library will try to extract data for that channel from the streamer file. If data
for that channel does not exist, then the first (and possibly only) channel data in the streamer is extracted
and used. For example, if DEMO2.DAT is assigned as the data source for the demo board's channel 5, then
the library will try to extract data from the file corresponding to channel 5. DEMO2.DAT may have scan
data corresponding to channels 0 through 15, and if so then channel 5 is extracted. Or, DEMO2.DAT may
have data for a single channel, say 3. If so, then that data is used for the demo board's channel 5.

52

Digital I/O
Functions: cbDIn(), cbDBitIn(), cbDInScan(), cbDOut(), cbDBitOut(), cbDOutScan(),
cbDConfigPort(),
PortNum: FIRSTPORTA, FIRSTPORTB, AUXPORT
DataValue: 0 to 255 using PORTA, PORTB, or AUXPORT
BitNum: 0 to 15 FIRSTPORTA

DEMO-BOARD simulates:
one 8-bit AUXPORT non-configurable digital input port. Each bit of the AUXPORT generates a
square wave with a different period.
one 8-bit AUXPORT non-configurable digital output port.
two 8-bit configurable digital I/O ports - FIRSTPORTA, FIRSTPORTB - which can be used for
high speed scanning. FIRSTPORTA functions like AUXPORT in that it generates square waves.
Each bit of FIRSTPORTB generates a pulse with a different frequency.

53

15.0 APPENDIX A. ERROR CODES

Each entry in the list has four parts. The error code number, it's symbolic name, it's error message, and a
explanation.

SYMBOLIC_NAME Error message
Description

0 NOERRORS No error has occurred.
The function executed successfully

1 BADBOARD Invalid board number.
The board number that was specified does not match any of the boards that are listed in the configuration
file. Run the configuration program to check which board numbers are configured.

2 DEADDIGITALDEV Digital device is not responding - is base address correct?
The digital device on the specified board is not responding. Either the board was installed incorrectly or the
board is defective. Run the configuration program and make sure that the correct board was installed.

3 DEADCOUNTERDEV Counter device is not responding - is base address correct?
The counter device on the specified board is not responding. Either the board was installed incorrectly or
the board is defective. Run the configuration program and make sure that the correct board was installed.

4 DEADDADEV D/A is not responding - is base address correct?
The D/A device on the specified board is not responding. Either the board was installed incorrectly or the
board is defective. Run the configuration program and make sure that the correct board was installed.

5 DEADADDEV A/D is not responding - is base address correct?
The A/D device on the specified board is not responding. Either the board was installed incorrectly or the
board is defective. Run the configuration program and make sure that the correct boards was installed.

6 NOTDIGITALCONF Selected board does not have digital I/O.
A digital I/O function was called with a board number that referred to a board that does not support digital
I/O. Run the configuration program to see which type of board that board number refers to.

7 NOTCOUNTERCONF Selected board does not have a counter.
A counter function was called with a board number that referred to a board that does not have a counter.
Run the configuration program to see which type of board that board number refers to.

8 NOTDACONF Selected board does not have a D/A.
An analog output function was called with a board number that referred to a board that does not have an
analog output (D/A). Run the configuration program to see which type of board that board number refers
to.

54

9 NOTADCONF Selected board does not have an A/D.
An analog input function was called with a board number that referred to a board that does not have an
analog input (A/D). Run the configuration program to see which type of board that board number refers
to.

10 NOTMUXCONF Selected board does not have thermocouple inputs.
A thermocouple input function was called with a board number that does not support thermocouple inputs
or is not connected to an EXP board. Run the configuration program to view/change the board
configuration.

11 BADPORTNUM Invalid digital port number.
The Port number that was specified for a digital I/O function does not exist on the board that was specified.

12 BADCOUNTERDEVNUM Invalid counter device.
The Counter Number that was specified for a counter function does not exist on the board that was
specified.

13 BADDADEVNUM Invalid D/A device.
The D/A channel that was specified for an analog output function does not exist on the board that was
specified.

14 BADSAMPLEMODE Invalid sample mode.
A sample mode that is not supported on this board (SINGLEIO, DMAIO or BLOCKIO) was specified in
the Options argument. Try running the function without setting any of the Sample Mode options.

15 BADINT Board configured for invalid interrupt level.
No interrupt was selected in InstaCal and one is required, or the board is set for “compatible mode” and the
interrupt level selected is not supported in this mode. Interrupts above 7 are not valid in compatible mode.
Either change the switch setting on the board to “enhanced mode”, or change the interrupt level with the
configuration program to something less than 8.

16 BADADCHAN Invalid A/D channel number.
An invalid channel argument was passed to an analog input function. The range of valid channel numbers
depends on which A/D board you are using - refer to the board manual. For some boards it also depends
on how the board is configured (with a switch). For those boards run the configuration program and check
how many channels the board is configured for.

17 BADCOUNT Invalid count.
An invalid Count argument was specified to a function.

18 BADCNTRCONFIG Invalid counter configuration specified.
An invalid Config argument was passed to cbC8254Config. The only legal values are
HIGHONLASTCOUNT, ONESHOT, RATEGENERATOR, SQUAREWAVE, SOFTWARESTROBE
and HARDWARESTROBE.

19 BADDAVAL Invalid D/A value.

55

An invalid D/A value was passed as an argument to an analog output function. The only legal values are 0
- 4095 for 12 bit boards or 0-65,535 for 16 bit boards (see notes on signed integers).

20 BADDACHAN Invalid D/A channel number.
An inavlid D/A channel was passed as an argument to an analog output function. The legal range of values
depends on which D/A board you are using. Refer to the board manual to find how many D/A channels it
has.

22 ALREADYACTIVE Background operation already in progress.
An attempt was made to start a second background process on the same board before the first one had
completed. Background processes are started whenever the BACKGROUND option is used or by the
cbCStoreOnInt function. To stop a background operation call cbStopBackground(). To wait for a
background process to complete call cbGetStatus() and wait for status=IDLE.

23 PAGEOVERRUN DMA transfer crossed page boundary, may have gaps in data.
When a DMA transfer crosses a 64K memory page boundary on boards without FIFO buffers, there may be
a small gap (missing samples) in the data. For applications requiring high speed transfers of greater than
32K samples, please select a board with a FIFO buffer. For boards without, check the data for gaps and do
not specify rates over that at which gapless data may be taken. This is system specific and you must
determine the rate by experimentation.

24 BADRATE Invalid sampling rate.
Invalid sampling rate argument was specified. The rate was either zero, a negative number or it was higher
than the selected board supports. Refer to board specific information for maximum rates for each board.

25 COMPATMODE Board switches set for Compatible mode.
An operation was attempted that is not possible when the board's switch is set for 'compatible' operation.
Most likely causes are using the BLOCKIO option or the pre-triggering functions. Either turn off the
'compatible' mode switch on the board or don't use the BLOCKIO option or the pre-triggering functions.

26 TRIGSTATE Incorrect initial trigger state - trigger must start at TTL low.
Boards that use “polled gate” triggering require that the trigger be "off" when a pre-trigger functions is first
called. It then waits for the trigger signal. Make sure that the Trigger Input line (usually D0) is held at
TTL low before calling the pre-trigger function.

27 ADSTATUSHUNG A/D is not responding.
The A/D board is not responding as it should. Usually indicates some kind of hardware problem - either
defective hardware or more than one board at the same base address.

28 TOOFEW Trigger occurred before requested number of samples were collected.
A pre-trigger function was called and the trigger signal occurred before the requested number of samples
could be collected. This is only a warning message. The function continued anyway. The data that was
returned to the array will contain fewer than the expected number of points. The function will return the
actual number of pre-trigger points and the total number of points. You can use these two values to find
your way around the data in the array.

56

29 OVERRUN Data overrun - data was lost.
Data was lost during an analog input because the computer could not keep up with the A/D sampling rate.
This typically can only happen with the file input functions or using SINGLIO mode. Possible solutions
include lowering the sampling rate, defragmenting the "streamer" file, switching to a RAM disk, or
lowering the count.

30 BADRANGE Invalid voltage or current range..
Invalid Range argument was specified to an analog input or output function. The board does not support
the gain you specified. Refer to board specific information for a list of allowable ranges for each board.

31 NOPROGGAIN This A/D board does not have programmable gain.
Invalid Range argument was passed to an analog input function. The selected board does not support
programmable gains so the only valid Range argument is 0.

32 BADFILENAME Specified file name is not valid'.
The FileName argument that was passed to a file function is not valid. It is either an empty string or a
NULL pointer.

33 DISKISFULL Disk is full, could not complete operation.
A file operation failed before completing because the disk that it was writing to is full. Try erasing some
files from the disk. If this error occurred during either cbFileAInScan() or cbFilePretrig() it indicates
another problem. The disk space for these commands should have been previously allocated with the
MAKESTRM.EXE program. If this error is generated when data is being collected it indicates that you did
not allocate a large enough file with MAKESTRM.EXE.

34 COMPATWARN Board switch set to compatible mode - sampling speed may be limited.
The board's switch is set for 'Compatible mode". When in "compatible mode" BLOCKIO transfers are not
possible. BLOCKIO sampling was specified but it has automatically been changed to DMAIO transfers.
The maximum sampling rate will be limited to the maximum rate for DMA transfers. Change the
"compatible mode" switch on the board if you want to use BLOCKIO transfers.

35 BADPOINTER Pointer is not valid.
An invalid (NULL) pointer was passed as an argument to a function.

37 RATEWARNING Sample rate may be too fast for SINGLEIO mode.
The specified sampling rate MAY be too high. The maximum allowable sampling rate depends very much
on the computer that the program is running on. This warning is generated based on the slowest CPU
speed. Your computer may be able to sustain faster rates, but, you should expect the computer to lock up
(fail to respond to keyboard input) if you do exceed the sampling rate your computer can sustain.

38 CONVERTDMA CONVERTDATA cannot be used with DMA I/O and BACKGROUND.
The CONVERTDATA and BACKGROUND options can not be used together when the board is
transferring data via DMA. Possible solutions include: Use cbAConvertData() to convert the data after it
is collected. Don't use BACKGROUND option. Use BLOCKIO Option if your A/D board supports it.
Use SINGLEIO Option if your computer is fast enough to support the selected sampling rate.

39 DTCONNECTERR Board does not support DTCONNECT option.

57

The DTCONNECT Option was passed to an analog input function. The selected board does not support
that option.

40 FORECONTINUOUS CONTINUOUS can only be run with BACKGROUND.
The CONTINUOUS Option was passed to a function without also setting the BACKGROUND Option.
This is not allowed. Any time you set the CONTINUOUS Option you must also set the BACKGROUND
option.

41 BADBOARDTYPE This function can not be used with this board'
An attempt was made to call a function for a board that does not support that function.

42 WRONGDIGCONFIG Digital port not configured correctly for requested operation.
Some of the digital ports (FIRSTPORTA - EIGHTHPORTCH) must be configured as inputs OR outputs
but not both. An attempt was made to use a digital input function on a port that was configured as an
output or vice versa. Use cbDConfigPort() to switch a port's direction. If the board you are using contains
these port types and you do not call cbDConfigPort() in your program then all of the configurable ports will
be in an unknown state (input or output).

43 NOTCONFIGURABLE This digital port is not configurable (it’s an In/Out port).
cbDConfigPort() was called for a port that is not configurable. Check the Port Number argument passed to
cbDConfigPort() and make sure that it is in the range FIRSTPORTA - EIGHTHPORTCH. If not then
there is no need to call this function.

44 BADPORTCONFIG Invalid digital port configuration.
The Direction argument passed to cbDConfigPort() is invalid. It must be set to either DIGITALIN or
DIGITALOUT.

45 BADFIRSTPOINT First point number is not valid.
The First Point argument to cbReadFile() is invalid. It is either a negative number or it is larger then the
number of points in the file.

46 ENDOFFILE Attempted to read past the end of the file.
cbFileRead() attempted to read beyond the end of the file. Check the file length with cbFileGetInfo() and
make sure that the First Point and Count arguments to cbFileRead() are correct for that file length.

47 NOT8254CTR This board does not have an 8254 counter.
The cbC8254Config() function was called for a board that has a counter but not an 8254 counter. This
function can only be used with an 8254.

48 NOT9513CTR This board does not have a 9513 counter.
A function was called for a board that has a counter but not a 9513 counter. This function can only be used
with an 9513.

49 BADTRIGTYPE Invalid TrigType.
cbATrig() was called with an invalid TrigType argument. It must be set to either TRIGABOVE or
TRIGBELOW.

58

50 BADTRIGVALUE Invalid TrigValue.
cbATrig() was called with an invalid TrigValue argument. It must be in the range 0 - 4095 for 12 bit
boards or 0 to 65535 for 16 bit boards (see notes on signed integers).

52 BADOPTION Invalid option specified for this function.
The Option argument contains an option that is not valid for this function.

53 BADPRETRIGCOUNT Invalid PreTrigCount specified.
Either cbAPretrig() or cbFilePretrig() was called with an invalid preTrigCount argument. The pre-trigger
count must not be < 0 and must be less then TotalCount - 512. It also must be less than 32k for
cbAPretrig() and less than 16k for cbFilePretrig().

55 BADDIVIDER Invalid Fout Divider value.
The Fout Divider argument to cbC9513Init() is not valid. It must be in the range 0 - 15.

56 BADSOURCE Invalid Fout Source value.
The Source argument to cbC9513Init() is not valid. It must be one of the following values CTRINPUT1,
CTRINPUT2, CTRINPUT3, CTRINPUT4, CTRINPUT5, GATE1, GATE2, GATE3, GATE4, GATE5,
FREQ1, FERQ2, FREQ3, FREQ4, FREQ5 (i.e. 0 - 15)

57 BADCOMPARE Invalid compare value.
One or both of the compare arguments to cbC9513Init() are not valid. They must be set to ENABLED or
DISABLED (1 or 0).

58 BADTIMEOFDAY Invalid Time Of Day value.
The TimeOfDay argument to cbC9513Init() is not valid. It must be set to either ENABLED or
DISABLED (1 or 0).

59 BADGATEINTERVAL Invalid Gate Interval value.
The GateInterval argument to cbCFreqIn() is not valid. It must be greater than 0.

60 BADGATECNTRL Invalid Gate Control value.
The GateControl argument to cbC9513Config() is not valid. It must be in the range 0 -7.

61 BADCOUNTEREDGE Invalid Counter Edge value
The CounterEdge argument to cbC9513Config() is not valid. It must be set to either POSITIVEEDGE or
NEGATIVEEDGE.

62 BADSPCLGATE Invalid Special Gate value.
The SpecialGate argument to cbC9513Config() is not valid. It must be set to either ENABLED or
DISABLED (1 or 0).

63 BADRELOAD Invalid Reload value.
The Reload argument to cbC9513Config() is not valid. It must be set to either LOADREG or
LOADANDHOLDREG

64 BADRECYCLEFLAG Invalid Recycle Mode value.

59

The RecycleMode argument to cbC9513Config() is not valid. It must be set to either ENABLED or
DISABLED (1 or 0).

65 BADBCDFLAG Invalid BCD Mode value.
The BCDMode argument to cbC9513Config() is not valid. It must be set to either ENABLED or
DISABLED (1 or 0).

66 BADDIRECTION Invalid Count Direction value.
The CountDirection argument to cbC9513Config() is not valid. It must be set to either COUNTUP or
COUNTDOWN.

67 BADOUTCONTROL Invalid Output Control value.
The OutputControl argument to cbC9513Config() is not valid. It must be set to either ALWAYSLOW,
HIGHPULSEONTC, TOGGLEONTC, DISCONNECTED or LOWPULSEONTC.

68 BADBITNUMBER Invalid Bitnum specified.
The BitNum argument to cbDBitIn() or cbDBitOut() is not valid. The valid range of bit numbers depends
on the selected board. If it is a DIO24 compatible board the maximum bit number is 23. If it's a DIO96,
the maximum bit number is 95. (See board specific information.)

69 NONEENABLED None of the counter channels were enabled.
None of the counter channels were marked as ENABLED in the CntrCntrl array that was passed to
cbCStoreOnInt(). At least one of the counter channels must be enabled.

70 BADCTRCONTROL An element of Cntr Control array not set to DISABLED or ENABLED.
One of the elements of the CntrControl array that was passed to cbCStoreOnInt() was set to something
other then ENABLED or DISABLED. The array must have at least ten elements and the first ten
elements must be set to either ENABLED or DISABLED.

71 BADEXPCHAN Invalid EXP channel specified.
An invalid channel was passed to one of the thermocouple input commands. The channel number when
using an EXP board must be >= 16. The maximum allowable channel number depends on which EXP
board is being used (and how many of them). Refer to the board manual to find the number of channels.

72 WRONGADRANGE Board set to wrong A/D range for reading thermocouples.
A thermocouple input function was called to read an EXP board input. The EXP board is connected to an
A/D board with hardware-selected gain that is set to the wrong range. When using EXP boards with
thermocouples, the A/D must be set to the -5 to +5 volt range when available. When using RTD sensors,
the range is 0 to 10V when available.

73 OUTOFRANGE Temperature input is out of range.
A thermocouple input function returned an invalid temperature. This usually indicates an open connection
in the thermocouple or its connection to the EXP board.

74 BADTEMPSCALE Invalid temperature scale specified.
The Scale argument to a thermocouple input function is not valid. It must be set to either CELSIUS,
FAHRENHEIT or KELVIN.

60

76 NOQUEUE Specified board does not have channel/gain queue.
The function that was called requires that the board has a channel/gain queue. The specified board does
not have a queue.

77 CONTINUOSCOUNT Count must be > packet size to use recycle mode
The count argument is not valid for continuous mode. Using BLOCKIO mode, the Count argument must be
large enough to cause at least one interrupt. This is usually half the size of the boards FIFO (typical sizes
are 256, 512 and 1024). See board specific information for details.

78 UNDERRUN D/A FIFO went empty during output.
The specified D/A output rate could not be sustained. This error should not normally occur.

79 BADMEMMODE Invalid memory mode specified.
The memory mode that was selected with cbMemSetDTMode() is not one of the valid modes.

80 FREQOVERRUN Measured frequency too high for selected gating interval.
The gating interval used with cbFreqIn() is too long to measure the frequency of the signal connected to the
counter. The counter is overflowing. Decrease the gating interval to eliminate the error.

81 NOCJCCHAN A CJC Channel must be configured to make temperature
measurements.
When the board was installed (with the InstaCal installation program) no CJC channel was selected. To
use the temperature measurement functions with thermocouples you must first select a CJC channel on the
A/D board and then rerun the installation program.

82 BADCHIPNUM Invalid Chipnum specified.
An invalid ChipNum argument was used with the cbC9513Init() function. If the board is CTR05 then
ChipNum should be set to 0. If it is a CTR10, ChipNum should be either 0 or 1.

83 DIGNOTENABLED The digital I/O on this board is not enabled.
When the board was installed (with the InstaCal installation program), the expansion digital I/O was set to
DISABLED. To use these digital I/O lines you must enable the digital I/O on the board (with a jumper)
and then re-run the installation program and set the digital I/O to ENABLED.

84 CONVERT16BITS CONVERT option can not be used with 16 bit A/D converters.
When using a 16 bit A/D (DAS1600/16), if you try to use the CONVERT option with cbAInScan() or call
cbAConvertData() you will get this error.

85 NOMEMBOARD The EXTMEMORY option requires that a MEGA-FIFO be attached..
Attempt to use a cbMem() function without a MEGA-FIFO board installed. Install MEGA-FIFO through
InstaCal.

86 DTACTIVE No memory read/write allowed while DT transfer in progress.
A read or write to a memory board was attempted while data was being transferred via DT Connect.

61

87 NOTMEMCONF Specified board is not a memory board.
The specified board is not a memory board. This function only works with memory boards.

88 ODDCHAN The first channel in scan and number of channels must be even (0, 2, 4, etc).
Some boards use a channel/gain queue that require the first channel in the queue and the number of
channels in the queue always be an even channel. This error can occur even when you are not in the
process of loading the queue. Some boards use the queue automatically with cbAInScan(). On those
boards the low channel must be an even number.

89 CTRNOINIT Counter was not configured or initialized.
You attempted to use cbCLoad() or cbCIn() before inititalizing and configuring the counter.

90 NOT8536CTR This board does not have an 8536 counter chip.
Attempt to use 8536 initialization or configuration on board without 8536 chip.

91 FREERUNNING Board doesn't time A/D sampling. Collecting at fastest possible speed.
This board does not have an A/D pacer mechanism and you have called the function cbAInScan(). The A/D
will be sampled in a tight software loop as fast as the CPU can execute the instructions. The speed of
sampling is dependent on the computer and the concurrent tasks.

92 INTERRUPTED Operation interrupted with Ctrl-C key.
A foreground operation was stopped before completion because either the Ctrl-C or Ctrl-Break keys were
pressed.

93 NOSELECTORS No selector could be allocated.
A Windows selector required by the library could not be allocated. Close any unneeded open Windows
applications and try again.

94 NOBURSTMODE This board does not support burst mode.
An attempt was made to use the BURSTMODE option on a board which does not support that option.

95 NOTWINDOWSFUNC This function is not available in Windows library.
The library function you called is not supported in the current revision of Universal Library for Windows
Languages. It may be supported in the future. Please call.

96 NOTSIMULCONF Board not configured for SIMULTANEOUS option.
The configuration file of the D/A board in InstaCal must be set for simultaneous update before you use the
SIMULTANEOUS option of cbAOutScan() function. The jumpers on the D/A board must be set for
simultaneous update before it will work.

97 EVENODDMISMATCH An even channel is in an odd slot in the queue, or vice versa.
The channel gain queue on some A/D boards has a restriction that the channel numbers must be in even
queue positions and odd channel numbers must be in odd queue positions.

98 M1RATEWARNING Sampling speed to system memory MAY be too fast.
The A/D board sampling speed you have requested may be too fast for the computer system bus transfer to
complete before the next packet is ready for transfer. If this is the case, data will overrun and sample data

62

will be garbled. This warning is initiated whenever you request a sample rate over 625 KHz AND the
sample set is larger than the FIFO buffer on the board AND an external memory board, such as a
MEGA-FIFO is not being used. Your system may be able to handle the rate requested but only
experimentation will bear this out. Your system may be capable of the full 1 MHz rate directly to system
memory.

99 NOTRS485 Selected board is not a RS-485 board
An attempt was made to call cbRS485() with a board that is not RS485 compatible.

100 NOTDOSFUNC This function not available in DOS
The function that was called is not available in the DOS version of the Universal Library.

101 RANGEMISMATCH Bipolar and unipolar ranges cannot be used together in A/D queue.
The channel/gain queue should only be loaded (via cbALoadQueue()) with all unipolar or bipolar ranges

102 CLOCKTOOSLOW Sampling rate is too high for clockspeed, change clock jumper on board.
The sampling rate that you requested is too fast. The A/D board pacer might be capable of running at a
higher rate. Check the board for an XTAL jumper and, if it is not set for the highest rate, place the jumper
in the position for the highest rate. Once the jumper is set, re-run InstaCal.

103 BADCALFACTORS Calibration factors are invalid - Disabling software calibration
The selected board uses software calibration and the stored calibration factors are invalid. Run InstaCal and
calibrate the board before using it.

104 BADCONFIGTYPE Invalid configuration information type specified
An invalid ConfigType argument was passed to either cbGetConfig() or cbSetConfig().

105 BADCONFIGITEM Invalid configuration item specified
An invalid ConfigItem argument was passed to either cbGetConfig() or cbSetConfig().

106 NOPCMCIABOARD Cannot access the PCMCIA board
Cannot access the specified PCMCIA board. Make sure that the PCMCIA Card & Socket Services are
installed correctly and that the board was installed in the system correctly via InstaCal.

107 NOBACKGROUND Board does not support background operation
The BACKGROUND option was used and the specified board does not support background operation.

108 STRINGTOOSHORT The string argument is too short for the string being returned
The string passed to a library function is to small to contain the string that is being returned. Increase the
size of the string to the minimum size specified for the function that you are using.

109 CONVERTEXTMEM CONVERTDATA not allowed with EXTMEMORY option
You requested both the CONVERTDATA and EXTMEMORY option. These options can not be used
together. Collect the data without the CONVERTDATA option. Once the data has been collected then
read it back from the memory card (cbMemRead() or cbMemReadPretrig()) and use the cbAConvertData()
function to convert the data.

63

110 BADEUADD Program error - bad values used in cbFromEngUnits or cbToEngUnits
Invalid floating point data was used in cbFromEngUnits or cbToEngUnits. Check the arguments passed to
the relevant function.

111 DAS16JRRATEWARNING Rates greater than 125 kHz must use on board 10 MHz clock.
If a rate greater than 125KHz is selected and the on board jumper is set for 1 MHz when using the
CIO-DAS16/Jr, this warning is generated. Place the jumper on the 10 MHz position and update your
InstaCal settings.

112 DAS08TOOLOW_RATE The desired sample rate is below hardware minimum
Increase the value of the Rate argument in cbAInScan(). The lowest pacer frequency is the clock frequency
(usually 8 MHz / 2) divided by 65535 for the CIO-, PC104 and PCM- DAS08.

114 AMBIGSENSORONGP More than one temperature sensor type defined for EXP-GP
Thermocouple and RTD types are both defined for an EXP-GP. The cbTIn() and cbTInScan() functions
require that only one be defined to operate. Set one of the sensor types to "Not Installed" within the
appropriate Instacal menu.

115 NOSENSORTYPEONGP No temperature sensor type defined for EXP-GP
Neither Thermocouple nor RTD types are defined for an EXP-GP. The cbTIn() and cbTInScan() functions
require that one and only one be defined to operate. Set one of the sensor types to a predefined type within
the appropriate Instacal menu.

116 NOCONVERSIONNEEDED Selected 12 bit board already returns converted data
Some 12 bit boards do not need to have their data converted after a call to cbAInScan() with the
NOCONVERTDATA option. These boards return no channel tags and therefore return data in its proper
format. Calling cbAConvertData() with data generated from these boards will generate this warning.

117 NOEXTCONTINUOUS CONTINUOUS mode cannot be used with EXTMEMORY
CONTINUOUS mode is ignored when used with the EXTMEMORY option.

118 INVALIDPRETRIGCONVERT cbAConvertPretrigData called after cbAPretrig failed
The data you are attempting to convert with cbAConvertPretrigData() can not be converted because the
cbAPretrig() function did not return a complete data set - probably due to an early trigger.

119 BADCTRREG Bad counter argument passed to cbCLoad
The RegName argument passed to cbCLoad is not a valid register.

120 BADTRIGTHRESHOLD Low trigger threshold is greater than high threshold
The LowThreshold arguments to cbSetTrigger() must be less than the HighThreshold

121 BADPCMSLOT NO PCM Card was found in the specified slot
This is usually caused by swapping PCMCIA cards and not re-running InstaCal. Please run InstaCal.

64

122 AMBIGPCMSLOTREF Two identical PCM cards found. Please specify exact slot in Instacal.
This error occurs in DOS mode only when InstaCal is configured for a PCMCIA card in "any slot". To
correct the problem, run InstaCal. Go to the Install menu and pop up the board's menu. Highlight PCMCIA
slot and choose either "0" or "1".

123 BADSENSORTYPEInvalid sensor type selected in Instacal
The specified sensor type is not part of the allowed list of thermocouple/RTD types. Set the sensor type to
a predefined type within the appropriate InstaCal menu.

126 CFGFILENOTFOUND Cannot find CB.CFG file
The CB.CFG file could not be found. This file should be located in the same directory that you installed the
software in.

127 NOVDDINSTALLED The CBUL.386 virtual device driver is not installed
The Windows device driver CBUL.386 is not installed on your system. Normally, it will be automatically
installed when you run the ComputerBoards standard installation program. The following line should be in
your \windows\system.ini file in the [386Enh] section.
 device=c:\cb\cbul.386

128 NOWINDOWSMEMORY Requested amount of Windows page-locked memory is not available
The Windows device driver could not allocate the required amount of physical memory. This error should
not normally occur unless you are collecting very large amounts of data or your system is very memory
constrained. If you are collecting a very large block of memory, try collecting a smaller amount. If this is
not an option, than consider using cbFileAscan() instead of cbAInScan(). Also, if you are running other
programs, try shutting them down.

129 OUTOFDOSMEMORY Not enough DOS memory available
Try closing down any unneeded programs that are running

130 OBSOLETEOPTION Obsolete option specified for cbSetConfig/cbGetConfig
The specified configuration item is no longer supported in the 32 bit version of the Universal Library.

131 NOPCMREGKEY No registry entry for this PCMCIA card
When running under Windows/NT, there must be an entry in the system registry for each PCMCIA card
that you will be using with the system. This is ordinarily taken care of automatically by the Universal
Library installation program. If this error occurs, call ComputerBoards Technical Support department for
assistance.

132 NOCBUL32SYS CBUL32.SYS device driver is not installed
The Windows device driver CBUL.SYS is not installed on your system. Normally, it will be automatically
installed when you run the ComputerBoards standard installation program. Call ComputerBoards
Technical Support dept. for assistance.

133 NODMAMEMORY No DMA memory available to device driver
The Windows device driver could not allocate the minimum required amount of memory for DMA. If you
are sampling at slower speeds, you can specify SINGLEIO in the Options argument to cbAInScan(). This

65

will prevent the library from attempting to use DMA. In general though, this error should not ordinarily
occur. Please contact ComputerBoards Technical Support Dept with the details

134 IRQNOTAVAILABL E IRQ not available
The Interrupt Level that was specified for the board (in InstaCal) conflicts with another board in your
computer. Try switching to a different interrupt level.

135 NOT7266CTR “This board does not have an LS7266 counter”
This function can only be used with a board that contains an LS7266 chip. These chips are used on various
quadrature encoder input boards.

136 BADQUADRATURE “ Invalid Quadrature argument passed to cbC7266Config()”
The Quadrature argument must be set to either NO_QUAD, X1_QUAD, X2_QUAD or X4_QUAD

137 BADCOUNTMODE “ Invalid CountingMode argument passed to
cbC7266Config()”
The CountingMode argument must be set to either NORMAL_MODE, RANGE_LIMIT, NO_RECYCLE
or MODULO_N.

138 BADENCODING “ Invalid DataEncoding argument passed to cbC7266Config()”
The DataEncoding argument must be set to either BCD_ENCODING or BINARY_ENCODING.

139 BADINDEXMODE “ Invalid IndexMode argument passed to cbC7266Config()”
The IndexMode argument must be set to either INDEX_DISABLED, LOAD_CTR, LOAD_OUT_LATCH
or RESET_CTR

140 BADINVERTINDEX “ Invalid InvertIndex argument passed to cbC7266Config()”
The InvertIndex argument must be set to either ENABLED or DISABLED.

141 BADFLAGPINS “ Invalid FlagPins argument passed to cbC7266Config()”
The FlagPins argument must be set to either CARRY_BORROW, COMPARE_BORROW,
CARRYBORROW_UPDOWN or INDEX_ERROR

142 NOCTRSTATUS “This board does not support cbCStatus()”
This board does not return any status information.

143 NOGATEALLOWED “Gating may not be used when indexing is enabled”
Gating and indexing can not be used simultaneously. If Gating is set to ENABLED then IndexMode must
be set to INDEX_DISABLED.

144 NOINDEXALLOWED “Indexing not allowed in non-quadratue mode”
Indexing is not supported when Quadrature arg is set to NON_QUAD.

145 OPENCONNECTION “Temperature input has open connection”
A thermocouple being measured may have broken.

146 BMCONTINUOUSCOUNT “Count must be an integer multiple of packet size for recycle mode”

66

Increase the Count value to the packet size or remove the CONTINUOUS option.

147 BADCALLBACKFUNC “Invalid pointer to callback function passed as argument”
Find the correct pointer to your callback function (for example, using the AddressOf() function)

148 MBUSINUSE “MetraBus is busy”
Wait for completion of activity on bus.

149 MBUSNOCTLR “MetraBus I/O card has no configured controller”
Run Instacal configuration program and install a MetraBus controller card (such as the ISA-MDB64)

200-299 Internal error occurred in library - contact ComputerBoards

300-399 Internal error occurred in 32-bit Windows library - contact ComputerBoards
if the error you receive is not detailed below

304 CFG_FILE_READ_FAILURE Error reading from configuration file.
The program was unable to read configuration file cb.cfg. Confirm that cb.cfg was not deleted, moved, or
renamed since the software installation.

305 CFG_FILE_WRITE_FAILURE Error writing to configuration file.
The program was unable to write to the configuration file cb.cfg. Confirm that cb.cfg is present and that its
attributes are not set for Read-only. Also, check that not more than one application is trying to access this
file.

308 CFGFILE_CANT_OPEN Cannot open configuration file.
The program was unable to open the configuration file cb.cfg. Confirm that cb.cfg was not deleted, moved,
or renamed since the software installation.

325 BAD_RTD_CONVERSION Overflow of RTD conversion.
Either cbTIn() or cbTInScan() returned an invalid temperature conversion. Confirm that the configuration
matches the RTD type, and physical EXP board settings; pay particular attention to gain settings and RTD
base resistance. Also, check that the RTD leads are securely attached to the EXP terminals. Finally,
confirm that the board is measuring reasonable voltages via cbAIn().

326 NO_PCI_BIOS PCI BIOS not present on the PC.
Could not locate the BIOS for the PCI bus. Consult PC supplier for proper installation of the PCI BIOS.

327 BAD_PCI_INDEX Specified PCI board not detected.
The specified PCI board was not detected. Check that PCI board in securely installed into PCI slot. Also,
run Instacal to locate/set valid base address and configuration.

328 NO_PCI_BOARD Specified PCI board not detected.
The specified PCI board was not detected. Check that PCI board in securely installed into PCI slot. Also,
run Instacal to locate/set valid base address and configuration.

67

334 CANT_INSTALL_INT Cannot install interrupt handler. IRQ already in use.
The device driver could not enable requested interrupt. Check that the selected IRQ is not already in use by
another device. This error can also occur if a FOREGROUND scan was aborted; in such cases, rebooting
the PC will correct the problem.

400-499 PCMCIA Card & Socket Service error - contact Computerboards

500-599 Internal DOS error - contact ComputerBoards

600-699 Internal Windows error - contact ComputerBoards if the error you receive is not
detailed below.

603 WIN_CANNOT_ENABLE_INT Cannot enable interrupt. IRQ already in use.
The device driver could not enable requested interrupt. Check that the selected IRQ is not already in use by
another device. This error can also occur if a FOREGROUND scan was aborted; in such cases, rebooting
the PC will correct the problem.

605 WIN_CANNOT_DISABLE_INT Cannot disable interrupts.
The device driver was unable to disable the IRQ. This can occur when interrupts are generated too fast for
the PC to complete servicing. For example, sampling at high frequencies (above ~2 kHz) with scan mode
set for SINGLEIO can lead to this error. Frequently, an OVERRUN error accompanies this condition.

606 WIN_CANT_PAGE_LOCK_BUFFER Insufficient memory to page lock data buffer.
There is not enough physical memory to lock down the entire data buffer. Try closing out other
applications, selecting smaller data buffers, or installing additional RAM.

630 NO_PCM_CARD PCM card not detected.
The specified PCMCIA card was not detected. Confirm that the PCM card is securely plugged into

PCMCIA slot. If the board continues to return this error, run Instacal to reset the configuration.

68

For your notes.

ComputerBoards
16 Commerce Blvd

Middleboro, MA 02346
Tel: (508) 946-5100
Fax: (508) 946-9500

E-mail: info@computerboards.com
www.computerboards.com

